
154 	 Electronics Teach-In 2

pins) we will connect to the default
port pins: PORTB0-3 for LCD data,
PORTB4 for the E signal, PORTB5
for the RS signal and PORTB6 for
the RW signal.

Now we know the connections for
the LCD we are free to choose the
two port pins for our switches. For
simplicity, we will use PORTA0 for
switch 1, and PORTA1 for switch 2.

Adding a few pull-up resistors
and a couple of decoupling capaci-
tors, we quickly arrive at the circuit
diagram in Fig.1.

Building the circuit should not be
a challenge; the USB connector has
four pins on a 0.1 inch pitch, which
will fit to stripboard. The connection
to the LCD, TB1, is for a CDL4162 2
× 16 LCD that uses a 16-pin 0.1 inch
pitch header. It should be easy to con-
nect up to any 2 × 16 LCD based on
the popular HD44780 controller.

Software configuration
The example code will have

been installed into the directory
C:\MCHPFSUSB, with several sub-
directories. The code to the project
can be found in the fw\cdc sub
directory. You will find the file
MCHPUSB.mcw MPLAB project
file in this directory; if you double-
click on it you will open the entire
project in the MPLAB program.

So what does the CDC emulation
firmware actually do for us? Reading
the application note, it explains that
the code will enable the PIC, when
plugged into a USB port, to appear
as a new COM port on the computer.
You may then use any serial port code
(or HyperTerminal for that matter) to
connect to the board as though it were
on an RS232 interface.

Obviously, we must take a look
at what the software does before we
can start to modify it to make it work
with our specific hardware. Reading
the application note and scanning the
main source files (main.c, user.c) give
some ideas; the ‘framework’ of code
should start-up, wait for a keypress
and then display a message on any
terminal program that is connected to
the virtual com port.

Key press? What key? Searching
through the code reveals a couple of
macros that decide which port pins
‘map’ to the switch input signals used
by the software. Unsurprisingly, the port
pins used by the software do not match
ours; therefore, we need to change these
macros in the source code. You will find
these definitions in io_cfg.h.

At the moment they point to ports
B4 and B5; we want to use A0 and A1
– so let’s change them:

#define mInitAllSwitches() TRIS
Abits.TRISA0=1;TRISAbits.TRI

SA1=1;
#define mInitSwitch2() TRISA

bits.TRISA0=1;
#define mInitSwitch3() TRISA

bits.TRISA1=1;
#define sw2 PORTAbits.

RA0
#define sw3 PORTAbits.

RA1

As we mentioned in an earlier
article, it is always a good idea to
explicitly specify the config register
settings in your source code. The
example code does not do that, so
we will add it, to the beginning of
the file main.c (anywhere near the
top of the file). The code you should
add is:

#pragma config PLLDIV=5,
CPUDIV=OSC1_PLL2, USBDIV=2

#pragma config IESO=OFF,
FCMEM=OFF, FOSC=HSPLL_HS

#pragma config PWRT=OFF,
B O R = O F F, V R E G E N = O N ,
MCLRE=ON

#pragma config PBADEN=OFF,
STVREN=ON, LVP=OFF

#pragma config XINST=OFF,
DEBUG=OFF, WDT=OFF

The example code has several
configuration options for different
hardware designs. As we are going

Fig.1: circuit
diagram for the
USB Interface

for LCD control

Unfortunately page 154 of the Teach-In 2 book has been incorrectly printed. We apologise for the error. This is the
correct page which should be used instead of page 154 in the book.

Teach-In 2 Book P 154.indd 154 08/04/2009 09:33:54

