
EEPPEE PPIICC
TTUUTTOORRIIAALL VV22

Everyday Practical Electronics, June 2003 PIC Tutorial V2 Supplement – 33

Quite simply the easiest
low-cost way to learn

about using PIC
Microcontrollers!

In this final part we look at some of the
more sophisticated aspects of using PICs,
and highlight some differences between the

’84 and the ’87x and ’62x families.

��������	�
 PART THREE

EPE PIC
TUTORIAL

REFERRING back to Listing 30 and
Program TK3TUT30 of Part 2 last
month, we continue examining the

program for a 24-hour clock displayed on
an alphanumeric l.c.d.

�����������������
As with 7-segment l.e.d. clock counting

routines, with the l.c.d. program the
numerical values are held as BCD counts
and each digit is, of course, between 0 and
9 decimal. To the l.c.d., though, values 0 to
9 represent the characters which it holds at
its character register addresses 0 to 9,
which is not the same thing. The l.c.d.’s
characters which “look like” our 0 to 9, are
held at its addresses 48 to 57, in other
words, they are ASCII characters.

With the 7-segment display, we had to
use a table to convert from decimal to a
code that it would show meaningfully.
With the l.c.d., the conversion is much eas-
ier, we simply add the difference between
the decimal value and its ASCII value, i.e.
we increase the value by 48.

Conveniently, 48 decimal has a binary
value of 00110000. The BCD values for
decimal 0 to 9 lie between binary
00000000 and 00001001. All we need to
do, therefore, is to set bits 4 and 5 of the
time digit value in order to increase it by
48, i.e. decimal 9 becomes binary
00111001, which equals 57, the ASCII
code for numeral 9.

The easiest way to set bits 4 and 5 is to
either add 48 to the digit’s value, or to OR
48 with it. In other words, to use either
ADDLW 48 or IORLW 48 as the com-
mand. In this situation they both have the
same effect. To use BSF would require two
commands instead of just one. In the fol-
lowing conversion example, the additive
technique is used (IOR is used in the
program), as shown in Listing 30A.

The SWAPF STORE2,W swaps the nib-
bles of the value held in STORE2 and

holds the result in W, putting the tens into
the LSN position. Command ANDLW 15
isolates that nibble, zeroing the MSN.
Now ADDLW 48 converts the value to the
ASCII character, and LCDOUT is called,
which sends the data to the l.c.d. (Have
you noticed the similarity to the nibble
extraction used for 7-segment displays?)

Next, MOVF STORE2,W brings the
entire byte into W, ANDLW 15 isolates the
nibble which is in the correct LSN posi-
tion. Again ADDLW 48 and CALL LCD-
OUT are performed. Following that, the
ASCII value for a colon (58) is sent to the
l.c.d., using the single quotes method pre-
viously seen in tables.

����	������
Hours, minutes and seconds values are

dealt with similarly, although minutes are
followed by the decimal point (ASCII 46).
Seconds are not followed by any character,
although they could have a space character
(ASCII 32) sent after the units. The
sequence of events, from individually
incrementing time to outputting the data to
the l.c.d. is shown in Listing 30 (Part Two).

Now compare this listing with that for
outputting the time data to the 7-segment
displays (TK3TUT28). Look especially at
the clock count section (from CLKADD to
end of ADDCL2). The second version, of

which the main part is shown in Listing 30,
is considerably more compact.

After initialisation and general set-up,
the program enters the MAIN routine. At
each 1/25th second time-out, CLKADD is
called and the CLKCNT counter decre-
mented, as we saw earlier. Only if the
value of CLKCNT is zero is the next rou-
tine entered. After resetting CLKCNT, the
address of CLKSEC is set in the indirect
address register FSR, a loop (LOOP) is set
for three operations and STORE1 is
cleared for use as an up-counter. In the
three steps round the loop, CLKSEC is
dealt with first, then CLKMIN and then
CLKHRS.

First time round the loop, at ADDCLK
the first byte to be incremented is, of
course, CLKSEC. This is then checked for
a units value greater than nine and action
taken accordingly. Next, the value within
STORE1 is copied into W and a table
(CHKVAL – see full listing) is called,
returning with the maximum permitted
value for the byte being processed, storing
it in STORE2.

The value of the time byte (CLKSEC at
this moment) is then copied into W, which
is then subtracted from STORE2. If the
Carry flag is set, then STORE2 is greater
than CLKSEC (there is no borrow) and an
exit is made from the loop, no further
action being needed, and a jump is made to
the display routine (CLKSHW).

If CLKSEC is greater than STORE2 a
borrow occurs, thus CLKSEC is cleared,
counter STORE1 is incremented for the
sake of the table jump address, and the
FSR address is incremented (to point now
to CLKMIN). The loop counter (LOOP) is
decremented and, if it is not zero, the loop
is repeated, this time incrementing and
checking CLKMIN in the same way as
CLKSEC was dealt with. If CLKMIN is
reset, the loop is repeated for the third
occasion, this time for CLKHRS.

�����������

SWAPF STORE2,W ; get tens
ANDLW 15
ADDLW 48
CALL LCDOUT
MOVF STORE2,W ; get units
ANDLW 15
ADDLW 48
CALL LCDOUT
MOVLW ‘:’ ; insert colon
CALL LCDOUT

Two sub-routines are used with
CLKSHW, to save repetition of too many
commands. The routines are LCDLIN and
LCDFRM. The former is responsible for
setting the starting display cell position on
the l.c.d. Since in a larger program this
position could change frequently, it is
worthwhile having a generalised routine
for this purpose. In this case, we want the
time to be shown at the start of the second
l.c.d. line, so the value B’11000000’ (the
address of line 2 cell 0) is moved into W
and LCDLIN called. All LCDLIN does is
set the RSLINE flag for command mode
(BCF RSLINE,4), call LCDOUT, and reset
the RSLINE flag to character mode (BSF
RSLINE,4).

Next, the value of CLKHRS is moved
into W and LCDFRM called. This routine
does the swapping, ANDing and ORing
necessary for numerical conversion to the
ASCII value. After this, the colon is sent
directly to LCDOUT. Similar commands
are then given with regard to CLKMIN and
CLKSEC. The program then returns to the
MAIN routine to begin again.

It is worth commenting at this point that
the starting l.c.d. cell position can be set to
any value via the LCDLIN routine. Line 1
needs bits 7 and 6 set to 1 and 0 respec-
tively. Line 2 needs bits 7 and 6 set to 1 and
1 respectively. The cell position on the
lines is controlled by the final four binary
digits, bit 3, 2, 1, 0. For example, to set for
line 1 cell 8 (regarding the first cell as zero)
the value of B’10001000’ should be sent to
LCDLIN, for line 2 cell 15 the value is
B’11001111’.

���
�������
23.1. Extend the program so that the

clock also keeps track of months and years.

����
������
CONCEPTS EXAMINED

Adding time-setting switches

CONNECTIONS NEEDED
L.C.D. as in Fig.7 (Part Two)
CP20 to +5V OUT
CP21 to 0V OUT
Crystal oscillator

The clock program of TK3TUT30 that is
now being run is perfectly usable as a real-
time clock, as is the 7-segment version (but
see later). They both have a major problem
though, the programs have to be started
(reset) at exactly midnight for the time
shown to be accurate. What we need is the
ability to set the current time via switches,
as with most other time-keepers. Here we
show how switched time-setting can be
programmed into the l.c.d. version.

We have already looked quite heavily at
the use of switches in earlier sections. It is
not hard to implement switched time-set-
ting routines, but it takes quite a few com-
mands (as Listing 31 shows), especially as
we are allowing you a luxury: the ability to
count upwards or downwards on both min-
utes and hours. Many clocks do not allow
this, and it can be a right pain if you over-
shoot the time you want! We also allow
you the option of a fifth switch to reset the
seconds, although you will need to add that
switch externally to TK3’s p.c.b.

First, though, attention must be paid to
the rate at which the digits are changed by

the switches. We could easily insert a
switch checking routine either on each
1/25th count, or on each second. However,
the first is too fast for convenience, and the
other too slow. A better rate is on every
half-second. This can be arranged by halv-
ing the prescaler rate, setting it for a ratio
of 1:64 instead of 1:128. Thus, in the
initialisation, instead of commands
MOVLW B’10000110’ and MOVWF
OPTION_REG, we use:

MOVLW B’10000101’
MOVWF OPTION_REG

Counter CLKCNT is still set for 25 but
we use an additional counter HLFSEC for
half seconds, so that although the switches
are sampled every half second, the seconds
themselves are still incremented correctly.

Referring to Listing 31, you will see the
command CALL GETKEY, which is then
followed by INCF HLFSEC,F. Only if bit 0
of HLFSEC is 1 will the CLKADD routine
be entered. Imagine now that the switches
on PORTA are designated as follows:

SW4 = seconds reset
SW3 = hours
SW2 = minutes
SW1 = plus (+)
SW0 = minus (–)
(SW4 is the optional switch referred to a

moment ago)

At GETKEY, if switch SW3 is pressed
(hours), EVENT bit 0 is set to 1. This file
value will be used when accessing the
CHKVAL table for the maximum roll-over
value for hours or minutes. Now the
address of CLKHRS is moved into W and
a jump to TIMSET is made.

At this routine, the plus (+) and minus
(–) keys are read for their status, and the
addition (ADDTIM) or subtraction (SUB-
TIM) routine is jumped to and processed.
In these routines, not only have the units to
be checked for values greater than nine, but
the overall BCD value has to be checked
for greater than 23 (hours) and greater than
59 (minutes).

In the addition routine, the excess value
is checked for, and the value is reset to zero
if it is exceeded. In the subtraction routine,
zero is checked for, in which case the max-
imum allowed value is moved into the byte
as the reset value. In both instances, the
value within EVENT is moved into W and
table CHKVAL is called for the maximum
value.

All the commands involved in these rou-
tines should by now be familiar to you
without further explanation. Load
TK3TUT31.HEX and experiment with set-
ting the time.

����������
���
It is important to be aware that the accu-

racy of a crystal controlled clock using
coding such as this is not perfect. Crystals
are subject to manufacturing tolerance in
respect of the exact frequency at which
they oscillate. Unless the crystal on the
p.c.b. is oscillating at exactly
3276800·00Hz, the timing will drift over
extended periods.

In other hardware designs it is possible
to include a trimmer capacitor in the oscil-
lating circuit to adjust for timing drift. It is
also possible to include sophisticated
adjustment routines in the program to
compensate. Such an example is included
with the PICronos L.E.D. Wall Clock pub-
lished in EPE June ’03. Such techniques,
though, are beyond the scope of these
Tutorials.

���
�������
24.1. Change the role of switch SW4

and create a routine that will also show
how many hours, minutes and seconds
there are until midnight (00:00.00 hours or
24:00.00 if you find it easier) when you
press a switch, clearing the answer when
the switch is released.

34 – PIC Tutorial V2 Supplement Everyday Practical Electronics, June 2003

������������

�
��
���	������

MAIN BTFSS INTCON,2
GOTO MAIN
BCF INTCON,2
CALL CLKADD
GOTO MAIN

CLKADD DECFSZ CLKCNT,F
RETURN
MOVLW 25
MOVWF CLKCNT
CALL GETKEY
INCF HLFSEC,F
BTFSC HLFSEC,0
CALL CLKIT
RETURN

(Section from CLKIT to end of
LCDLIN omitted)

GETKEY BTFSS PORTA,3
GOTO CHKSW2
BSF EVENT,0
MOVLW CLKHRS
GOTO TIMSET

CHKSW2 BTFSS PORTA,2
RETURN
CLRF EVENT
MOVLW CLKMIN

TIMSET MOVWF FSR
BTFSC PORTA,0
GOTO SUBTIM
BTFSS PORTA,1
RETURN

ADDTIM INCF INDF,F
MOVLW 6
ADDWF INDF,W
BTFSC STATUS,DC
MOVWF INDF
INCF EVENT,W
CALL CHKVAL
MOVWF STORE2
MOVF INDF,W
SUBWF STORE2,F
BTFSS STATUS,C
CLRF INDF
GOTO CLKSHW

SUBTIM MOVLW 1
SUBWF INDF,F
BTFSS STATUS,C
GOTO SUBSET
BTFSC STATUS,DC
GOTO ENDSUB
MOVF INDF,W
ANDLW B’11110000’
IORLW 9
MOVWF INDF
GOTO ENDSUB

SUBSET INCF EVENT,W
CALL CHKVAL
MOVWF INDF

ENDSUB GOTO CLKSHW

24.2. This one is more complicated! By
doing exercise 24.1 you have lost the abili-
ty to reset the seconds count when you
want to – unless you amend the program,
seconds will be reset whenever SW4 is
pressed. It is possible to amend the pro-
gram so that switch SW1 and SW0 still
serve as plus and minus controls, but SW2
could be used to select whether it is the
minutes or the hours that are amended,
with a suitable symbol indicating which
value is under control. SW3 could then be
used to reset the seconds, with SW4 simply
controlling the midnight countdown dis-
play. Have a go at this challenge!

����
������
CONCEPTS EXAMINED

Writing and reading EEPROM file data
Register EECON1
Register EECON2
Register EEDATA
Register EEADR

We have already shown how convenient
it is to be able to repeatedly change the pro-
gram data within a PIC. The demos and
your experiments would simply not have
been practical had we been using a micro-
controller which required erasing by ultra-
violet light each time a new program had to
be loaded into it.

Now we come to another great advan-
tage of most PICs, including the
PIC16F84, the presence of an EEPROM
data memory which can be written to and
read from whenever we want, and which
will not lose the data when the power is
switched off.

We shall now show the commands need-
ed for EEPROM data memory read/write
operation and then in Tutorial 26 demon-
strate a simple program that makes use of
the facility.

The full program for this initial discus-
sion is on your disk as TK3TUT32, its
main contents are shown in Listings 32A
and 32B. Note that this program cannot be

run as it stands and is for use as a sub-
routine within a main program. Also note
that the program is specific to the
PIC16F84 and that other PIC families may
require slightly different coding. Examples
for the PIC16F87x and PIC16F62x fami-
lies are discussed later.

In some respects, use of the EEPROM
read/write facility is similar to that used in
indirect addressing, a special register
(EEADR) is loaded with the address with-
in the EEPROM at which the data is to be
stored or retrieved. This register can be
likened to FSR.

The data which has to be written to the
EEADR register is loaded into register
EEDATA (equivalent to INDF).

On retrieving data from the EEPROM,
register EEADR is loaded with the address
from which the data is to come, and then
the PIC copies the data from that position
into EEDATA.

Prior to writing data to the EEPROM, a
write-enable flag has to be set in register
EECON1. Another flag is set in EECON1
when data is to be read from the EEPROM.

To transfer data from EEDATA to the
EEPROM file pointed to by EEADR, an
obligatory routine as specified in the PIC’s
datasheet has to be performed. This routine
initialises operations built into the PIC and
which last for a predetermined time.

A flag (EECON1,4) is set by the PIC
when these operations have occurred and
its setting has to be waited for before fur-
ther program commands can be performed.
Failure to wait for the flag setting can dis-
rupt the correct storage of the data.

An example of how the writing routine
is used is shown in Listing 32A. Prior to
entry into the routine at SETPRM, the data
to be written is temporarily placed in file
STORE1 (or any name you like). Then the
EEPROM address at which the data is to be
stored is moved into W and the call to SET-
PRM is issued.

On entry to SETPRM, the contents of W
are copied into EEADR, and then, via
BANK1, the command BSF

EECON1,WREN is given, setting the
EEPROM into write-enable mode, after
which follows a reset to BANK0. Data is
then copied from STORE1 into W and then
into EEDATA.

Now the routine specified in the PIC’s
datasheet is started at label MANUAL. The
12 lines of this routine, from BANK1 down
to BCF INTCON,6 should be followed
parrot-fashion in any other EEPROM-writ-
ing program. The final return command
could be replaced by a GOTO, or by the
program immediately following on into
another routine.

Reading data from the EEPROM is very
simple, as Listing 32B shows. The routine
is entered at GETPRM with the EEPROM
file address held in W. This is copied into
EEADR then, via BANK1, the enable read
flag is set (BSF EECON1,RD) and
BANK0 reset. The data required is imme-
diately available to be copied into W by the
command MOVF EEDATA,W.

���
���� ��
There is no exercise for this Tutorial.

����
������
CONCEPTS EXAMINED

Illustrating use of EEPROM data
read/write

Converting binary value to hexadecimal

CONNECTIONS NEEDED
L.C.D. as in Fig.7
CP20 to +5V OUT
CP21 to 0V OUT
Crystal oscillator

Program TK3TUT33.ASM illustrates an
example of writing to and reading from the
PIC’s Data EEPROM. It uses the l.c.d. to
display three values, and switches SW0 to
SW2 to increment them. Switch SW3 caus-
es the new values to be stored into the Data
EEPROM at consecutive addresses from 0
to 2.

After the program’s initialisation
sequence, data currently stored in the EEP-
ROM is recalled as shown in routine GET-
VALUES in Listing 33. To retrieve a value
the address at which it is stored in the EEP-
ROM is first loaded into W (0 in the first
instance). The routine at GETPRM (dis-
cussed in Tutorial 25) is then called, and a
return is made to the calling routine with
the retrieved EEPROM value held in W.
This is then stored into the register required
(in the first instance VALUE0).

The procedure is repeated three times
and then a call is made to the display rou-
tine SHOWVALS in which the values are
shown in hexadecimal.

The MAIN routine is then entered in
which the four switches are read at 1/5th of
a second intervals (set by routine PAUSIT).
If any of switches SW0 to SW2 are found
to be pressed, the associated VALUE is
incremented in binary and the display rou-
tine called again, followed by a return to
label MAIN.

If switch SW3 is found to be pressed, the
data storage routine is called, at STOREIT.
The value to be stored (VALUE0 in the
first instance) is called into W and moved
into a temporary store, STORE1. The EEP-
ROM address at which the data is to be
stored (0 in the first instance) is then called
into W and the SETPRM routine called,

Everyday Practical Electronics, June 2003 PIC Tutorial V2 Supplement – 35

���������������
��
���	���������

SETPRM MOVWF EEADR ; Copy W into EEADR to set EEPROM address
BANK1
BSF EECON1,WREN ; enable write flag
BANK0
MOVF STORE1,W ; get data value from STORE1 and hold in W
MOVWF EEDATA ; copy W into EEPROM data byte register

MANUAL BANK1 ; these next 12 lines are according to
MOVLW H’55’ ; Microchip manual dictated factors
MOVWF EECON2 ; they cause the action required by
MOVLW H’AA’ ; by the EEPROM to store the data in EEDATA
MOVWF EECON2 ; at the address held by EEADR.
BSF EECON1,WR ; set the ”perform write’’ flag

CHKWRT BTFSS EECON1,4 ; wait until bit 4 of EECON1 is set
GOTO CHKWRT
BCF EECON1,WREN ; disable write
BCF EECON1,4 ; clear bit 4 of EECON1
BANK0
BCF INTCON,6 ; clear bit 6 of INTCON
RETURN ; and RETURN

�����������

GETPRM MOVWF EEADR ; copy W into EEADR to set EEPROM address
BANK1
BSF EECON1,RD ; enable read flag
BANK0
MOVF EEDATA,W ; read EEPROM data now in EEDATA into W
RETURN ; and RETURN

where the data is stored at the required
address (as discussed in Tutorial 25).

Following storage of all values, the word
STORED is displayed on screen for as long
as switch SW3 is held pressed. When the
switch is released, the word is cleared and
a jump back to label MAIN is made, to
await the next switch press.

For convenience in this Tutorial, in the
data display routine the binary values are
converted to hexadecimal and then dis-
played. In Tutorial 33 later, conversion of
binary numbers to decimal values suitable
for l.c.d. display use is illustrated.

In the binary to hex routine, an extract of
which is shown in Listing 33A, the byte
value is first swapped into W to put the
MSN (most significant nibble) into the
righthand position, and a call made to a
conversion table, HEXTABLE (see full
listing). Here the value in W is ANDed
with B’00001111’ to extract just the lower
nibble, and ADDed to PCL. The table jump
then returns with the hex value for that nib-
ble, which is then sent to the l.c.d. The pro-
cedure is repeated for the LSN of the value
byte.

To prove that the data has been stored,
note the three values, switch off the power
for a few seconds and then switch back on.

The data displayed on screen when the pro-
gram restarts will be the same as that
noted. You can also examine all the Data
EEPROM values via TK3’s EEPROM
Message Read facility.

EEPROM data storage and retrieval
has many applications in practical situa-
tions. For example, the option is valuable
when setting up a program during the
testing or tuning stages, allowing the
values to be recalled next time the pro-
gram is run.

The values to be stored need not have
originated from switches, they could be
provided by other functions within a pro-
gram. Storage of the values can be
in response to a switch press, as
illustrated, or could again be triggered by
some aspect within the running program,

such as in response to clocked timing
values.

It is vital to appreciate that a PIC’s Data
EEPROM has a finite number of times that
it can be written to – around one million
times according to the PIC16F84’s
datasheet. This may seem a large number,
but it can soon be consumed by incautious
programming causing the EEPROM to be
repeatedly written to.

During program development when
automatic EEPROM writing is included, it
is worthwhile putting in a temporary inter-
cept counter and l.e.d. or l.c.d. display rou-
tine to monitor the number of times that
calls are made to the EEPROM write
routine.

���
�������
The following two exercises are compli-

cated and should only be attempted by
those who have successfully followed the
Tutorials so far!

33.1 To illustrate EEPROM writing
and reading, the author considered modi-
fying the 4-note playing program of
TK3TUT19 so that it became eight notes,
which were played in the order specified
by data in the EEPROM. The data would
have been entered via the switches, using
the l.c.d. to display which note numbers
were being stored at which EEPROM
addresses.

A separate switch would have been
used to start and stop the note sequence
being played. Each note would have had a
duration of one second, although it would
be possible to set their durations by
switches. It would seem preferable to
have separate up/down switches, a MODE
switch to select the functions of the other
switches on a cyclic basis, and a
Start/Stop switch. It should be possible to
do it with the four switches on TK3’s
p.c.b. Can you do it?

33.2. You will have discovered that pre-
cise musical tuning of the four notes in
program TK3TUT19 is not possible using
the length of a loop to determine the fre-
quency. It is possible though, if within the
loop you use a 24-bit counter (three bytes,
MSB, NSB, LSB) and add a 16-bit number
(two bytes) to it. The toggling of PORTA
RA4 would then depend on one of the bit
values of the counter’s MSB. The additive
value depends on the note to be generated
and so eight notes need one each.

It is suggested that you try this technique
with the program modified in 33.1. The
principle was illustrated in the author’s
StyloPIC of July ’02 (on the PIC Resources
CD-ROM)..

(A similar additive technique can also be
used to adjust the precise timing of a crys-
tal controlled clock, as used in the
PICronos clock referred to earlier).

����
�����
CONCEPT EXAMINED

Interrupts
Command RETFIE

CONNECTIONS NEEDED
SW0 to RB0
LD0 to RA0
LD1-LD7 to RB1-RB7
CP20 to +5V OUT
CP21 to 0V OUT
Crystal oscillator

36 – PIC Tutorial V2 Supplement Everyday Practical Electronics, June 2003

��������������
��
���	���������

GETVALUES MOVLW 0 ; get values from EEPROM address 0 to 2
CALL GETPRM ; store into VALUE
MOVWF VALUE0
MOVLW 1
CALL GETPRM
MOVWF VALUE1
MOVLW 2
CALL GETPRM
MOVWF VALUE2
CALL SHOWVALS ; show values

MAIN CALL PAUSIT ; 1/5th sec pause
BTFSC PORTA,0 ; is SW0 pressed?
GOTO INCVAL0 ; yes
BTFSC PORTA,1 ; no, is SW1 pressed?
GOTO INCVAL1 ; yes
BTFSC PORTA,2 ; no, is SW2 pressed?
GOTO INCVAL2 ; yes
BTFSC PORTA,3 ; no, is SW3 pressed?
GOTO STOREIT ; yes
GOTO MAIN ; no

INCVAL0 INCF VALUE0,F ; inc VALUEs as called and then show
CALL SHOWVALS
GOTO MAIN

INCVAL1 INCF VALUE1,F
CALL SHOWVALS
GOTO MAIN

INCVAL2 INCF VALUE2,F
CALL SHOWVALS
GOTO MAIN

STOREIT MOVF VALUE0,W ; store all VALUEs into EEPROM
MOVWF STORE1
MOVLW 0
CALL SETPRM
MOVF VALUE1,W
MOVWF STORE1
MOVLW 1
CALL SETPRM
MOVF VALUE2,W
MOVWF STORE1
MOVLW 2
CALL SETPRM

(routine to display STORED)
WAITSW BTFSC PORTA,3 ; wait until switch SW3 released

GOTO WAITSW
(routine to clear STORED)

GOTO MAIN

�����������

SWAPF VALUE2,W
CALL HEXTABLE
CALL LCDOUT
MOVF VALUE2,W
CALL HEXTABLE
CALL LCDOUT

From here on, none of the commands
examined directly relate to extending or
modifying any of the foregoing programs.
Connect l.e.d. LD7 to PORTA pin RA0 and
switch SW0 to PORTB RB0.

����

����
Early on in this series, mention was

made of Interrupts, saying they would be
examined later. That “later” has arrived!

An Interrupt, as the term implies, literal-
ly is an “interrupt” to the program, causing
it to stop what it is currently doing, and
perform another action or set of actions,
returning to where it left off when the inter-
rupt occurred.

Interrupts can be set to occur from sev-
eral sources, of which two seem the most
likely ones to be required: externally from
another piece of equipment, such as a
switch or from a trigger pulse generated by
another electronic circuit; internally, at the
end of a time-out period generated by the
PIC’s own timer.

There are other interrupt possibilities,
but which are probably of more benefit to
experienced programmers and which will
not be detailed here. Readers wanting more
information on interrupts are referred to
Malcolm Wiles’ Programming PIC
Interrupts of EPE Mar/Apr ’02 (on the PIC
Resources CD-ROM).

There are countless situations where
interrupts can be put to good use. Let’s
examine two of them.

First, the address to which the program
must jump when interrupted has to be
specified. This is where the ORG 4 state-
ment now comes into its own. Following
that statement, and prior to the ORG 5
statement, the jump address is inserted.
Let’s call the jump address INTRPT. So, at
the beginning of the program listing we
make the following statements:

ORG 0 ; Reset Vector address
GOTO 5 ; go to PIC address

location 5
ORG 4 ; Interrupt Vector

address

GOTO INTRPT; go to interrupt routine
ORG 5 ; Start of Program

Memory

Since the program, once triggered by an
interrupt, automatically jumps to the pro-
gram address stated, we can simply set up
a holding routine which waits until the
interrupt occurs, and then the routine spec-
ified at the interrupt address is performed.

We could actually allow the entire pro-
gram to be performed without using a
holding routine, jumping to the specified
routine when the interrupt does occur. This
is tricky, though, and can be dangerous to
the correct operation of the main program.
Allowance has to made for a particular
operation to be completed before the inter-
rupt routine is performed. It is this type of
information and how to handle it that
Malcolm discusses in his article.

For our purposes now the use of a holding
routine illustrates the essential point about
an interrupt action. It can be as simple as:

START: NOP
GOTO START

The program would normally be con-
stantly looping through the two commands
NOP and GOTO START, waiting for an
interrupt to occur. On its occurrence, the
loop would be exited, and a jump made to
the routine at INTRPT. Obviously, at the
end of the routine caused by the interrupt,
a return to the program point from where
the interrupt jump was made must be spec-
ified. There is a command which is used
for this purpose, RETFIE.

���
�����

���
A simple program which makes use of

an internally timer-generated interrupt to
increment a count on PORTB is shown in
Listing 34. Here, the timer is set in the
same way as we have been doing previous-
ly. Then the INTCON register is told that
an interrupt is to be generated when the
timer rolls over to zero:

MOVLW B’10100000’
MOVWF INTCON

Setting bit 7 of INTCON enables the
program to respond to any interrupts gen-
erated. Setting INTCON bit 5 enables the
timer as the source of the interrupt. The
stage is now set and the START loop
entered. Each time a timer interrupt
occurs, a jump is made to INTRPT, where
PORTB has a value of 2 added to it (to
bypass LD0) and a return made to START
by the command RETFIE, to await another
interrupt.

To prove that the program is not just
“dropping out” of the START loop, a com-
mand to set PORTA RA0 high has been
included immediately following the GOTO
START command. As you will see via
l.e.d. LD7, this action is never performed.

Load and run TK3TUT34.HEX which
illustrates this interrupt.

����
��������

���
If, instead of using the timer to generate

interrupts, we want an external source to
generate them, one pin that can be used for
this purpose is PORTB RB0, designated in
the pinout diagram as RB0/INT. (Logic
level changes on PORTB RB4 to RB7 are
other possible interrupt sources.) To use
RB0 as the interrupt source, INTCON bit 4
must be set, as follows:

MOVLW B’10010000’
MOVWF INTCON

INTCON bit 7 must, as shown, also be
set to enable the interrupt.

(Note that if the l.c.d. is connected, the
PIC’s Light Pull-ups option, discussed
later, must be off by setting OPTION_REG
bit 7 high, as shown in Listing 35, other-
wise the influence of the l.c.d. may prevent
the interrupt from being generated.)

Suppose now that we want an external
interrupt on RB0 to cause the rest of
PORTB to be incremented. Each time this
interrupt occurs, the jump from the holding
loop is performed as before. However, it is
now INTCON bit 1 which is set on the
interrupt and has to be cleared before
returning to the holding loop, i.e. BCF
INTCON,1.

Load TK3TUT35 which illustrates this
external interrupt. The interrupt is generat-
ed using switch SW0.

Since the switches used on the p.c.b. are
probably only low-cost types, it is possible
that switch-bounce will cause slightly
erratic behaviour of the l.e.d.s. It should
become clear, however, that the count is
basically incremented when the switch is
pressed, not when it is released.

If a signal generator that outputs a
square wave is connected to RB0 and
monitored on a scope, the triggering
edge should be obvious when the gener-
ator’s rate is set very slow. The signal
generator must produce clean 0V to +5V
pulses.

����

��������
It is possible to change the interrupt

response to occur on either edge of the
external pulse. As illustrated in
TK3TUT35, it is in response to the rising
edge. To use the falling edge,
OPTION_REG bit 6 must be cleared dur-
ing the BANK1 setup routine, e.g.:

Everyday Practical Electronics, June 2003 PIC Tutorial V2 Supplement – 37

������������

�
��
���	������

ORG 0
GOTO 5
ORG 4
GOTO INTRPT
ORG 5

CLRF PORTA
CLRF PORTB
BANK1
CLRF TRISA
CLRF TRISB
MOVLW B’10000111’
MOVWF OPTION_REG
BANK0

MOVLW B’10100000’
MOVWF INTCON

START NOP
GOTO START

TEST BSF PORTA,0
INTRPT MOVLW 2

ADDWF PORTB,F
BCF INTCON,2

������������

�
��
���	������

ORG 0
GOTO 5
ORG 4
GOTO INTRPT
ORG 5

CLRF PORTA
CLRF PORTB
BANK1
CLRF TRISA
MOVLW B’00000001’
MOVWF TRISB
MOVLW B’11000111’
MOVWF OPTION_REG
BANK0

MOVLW B’10010000’
MOVWF INTCON

START NOP
GOTO START

INTRPT MOVLW 2
ADDWF PORTB,F
BCF INTCON,1
RETFIE

MOVLW B’10000111’
MOVWF OPTION_REG

Change TK3TUT35 to respond to the
falling edge and observe the result when
you now press switch SW0. Note that the
settings of OPTION_REG bits 0, 1 and 2
are irrelevant in this interrupt mode.

As you have seen, INTCON bit 7 is used
for enabling (1) and disabling (0) the inter-
rupts, in addition to any other bits required
for an interrupt to be enabled. It is possible
that at the moment of wishing to disable
the interrupts, however, that an interrupt
could be in the process of occurring. This
would result in the disabling command not
taking effect. To ensure that all interrupts
are fully disabled (except WDT – see
later), the following routine can be used:

DISABL BCF INTCON,GIE
BTFSC INTCON,GIE
GOTO DISABL

The term GIE is that equated for use as
INTCON bit 7. It should be equated as
such in the initialising commands. Its use is
in keeping with the PIC datasheet, which
calls this bit by that name, standing for
Global Interrupt Enable.

Malcolm discusses disabling GIE in his
Interrupts article.

���
������
27.1. Modify one of the early counting

programs so that it is automatically trig-
gered by an interrupt from line RB0 with-
out the need to read the INTCON register
flag.

27.2. You know that INTCON bit 1 and
INTCON bit 2 are both flags for interrupts.
Modify your program from 27.1 so it auto-
matically responds to interrupts from RB0
and from the TMR0 timer.

Hint: once an interrupt has occurred, the
INTCON flags can be read to see which
source has caused the interrupt. You can
also inhibit one interrupt from occurring

while you process the first by using other
INTCON bits. Use the l.e.d.s to show
respective counts from each source.

����
�����!
CONCEPT EXAMINED

Command SLEEP

CONNECTIONS NEEDED
SW0 to RB0
LD0 to RA0
LD1-LD7 to RB1-RB7
CP20 to +5V OUT
CP21 to 0V OUT
Crystal oscillator

SLEEP is a command that is rarely like-
ly to find use by most readers. The function
sets the PIC into a very low current power-
down mode. This can be useful if the PIC
is monitoring or controlling something at a
very slow rate. In this situation, there are
power saving advantages if the PIC can be
put to sleep during periods when it is not
required to perform. The PIC can be awok-
en from SLEEP by a WDT time-out or
through an external interrupt.

The program which illustrates the latter
is TK3TUT36. First connect l.e.d. LD0 to
RA0, and switch SW0 to RB0, then load
the program.

The program adds two to the count on
PORTB from zero up to the roll-over at
256, at which point PORTA RA0 is set to
turn on l.e.d. LD0. At this point, the pro-
gram is told to SLEEP.

It can only be awoken by pressing
switch SW0. Whereupon, RA0 is cleared
to turn off LD0, and the PORTB count
resumes, until again it rolls over to zero
and setting RA0, then falling asleep once
more. (This might remind you of your
occasional behaviour on a Monday morn-
ing after “the weekend before”!) Note the
use of two delays (DELAY1 and DELAY2)
slowing the program down by 256 × 256
looped actions for the sake of the demo.

���
������!
28.1. Put the PIC to sleep between each

detection of a TMR0 interrupt occurring
every 1/25th of a second while allowing it to
appropriately increment a seconds counter
and show its value on any of the display
types covered.

����
�����"
CONCEPTS EXAMINED

Watchdog timer (WDT)
Command CLRWDT

CONNECTIONS NEEDED
SW0 to RB0
LD0 to RA0
LD1-LD7 to RB1-RB7
CP20 to +5V OUT
CP21 to 0V OUT
Crystal oscillator

The Watchdog Timer (WDT) facility is
also probably one for which most readers
are unlikely to find much use. The purpose
of a WDT is to give the PIC a type of pro-
tection against becoming stuck in a perpet-
ual loop. This can happen in several ways,
but particularly in the event of unforeseen
program errors, or waiting for an external
event to happen but which does not (for
many and varied reasons, including equip-
ment malfunction).

38 – PIC Tutorial V2 Supplement Everyday Practical Electronics, June 2003

FIGURE 4-1: INTCON REGISTER (ADDRESS 0Bh, 8Bh)

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-x

GIE EEIE T0IE INTE RBIE T0IF INTF RBIF R = Readable bit
W = Writable bit
U = Unimplemented bit,

read as ‘0’
- n = Value at POR reset

bit7 bit0

bit 7: GIE: Global Interrupt Enable bit
1 = Enables all un-masked interrupts
0 = Disables all interrupts

Note: For the operation of the interrupt structure, please refer to Section 8.5.

bit 6: EEIE: EE Write Complete Interrupt Enable bit
1 = Enables the EE write complete interrupt
0 = Disables the EE write complete interrupt

bit 5: T0IE: TMR0 Overflow Interrupt Enable bit
1 = Enables the TMR0 interrupt
0 = Disables the TMR0 interrupt

bit 4: INTE: RB0/INT Interrupt Enable bit
1 = Enables the RB0/INT interrupt
0 = Disables the RB0/INT interrupt

bit 3: RBIE: RB Port Change Interrupt Enable bit
1 = Enables the RB port change interrupt
0 = Disables the RB port change interrupt

bit 2: T0IF: TMR0 overflow interrupt flag bit
1 = TMR0 has overflowed (must be cleared in software)
0 = TMR0 did not overflow

bit 1: INTF: RB0/INT Interrupt Flag bit
1 = The RB0/INT interrupt occurred
0 = The RB0/INT interrupt did not occur

bit 0: RBIF: RB Port Change Interrupt Flag bit
1 = When at least one of the RB7:RB4 pins changed state (must be cleared in software)
0 = None of the RB7:RB4 pins have changed state

TABLE 6: INTCON REGISTER (Courtesy MICROCHIP)

������������

�
��
���	������

CLRF PORTA
CLRF PORTB
BANK1
CLRF TRISA
MOVLW B’00000001’
MOVWF TRISB
MOVLW B’11000111’
MOVWF OPTION_REG
BANK0
CLRF DELAY1
CLRF DELAY2
MOVLW B’10010000’
MOVWF INTCON

MAIN DECFSZ DELAY1,F
GOTO MAIN
DECFSZ DELAY2,F
GOTO MAIN
MOVLW 2
ADDWF PORTB,F
BTFSS STATUS,C
GOTO BYPASS
BSF PORTA,0
SLEEP

BYPASS BCF INTCON,1
BCF PORTA,0
GOTO MAIN

RBIF
RBIE

T0IF
T0IE

INTF
INTE

GIE

EEIE

Wake-up
(If in SLEEP mode)

Interrupt to CPU

EEIF

Fig.9. PIC16F84 interrupt logic.

It is also possible for electrical spikes on
power lines to cause the malfunction,
although it can be argued that the use of a
good power supply should be mandatory in
situations where this could be an unaccept-
able problem.

In effect, the WDT provides a “last-
ditch” time-out timer which, if it is allowed
to time-out, causes a complete system
reset. The idea is that the WDT is set with
a timing value, and then at regular intervals
in the main loop of the program, this value
is repeatedly reloaded into it, i.e. it is reset,
using the command CLRWDT. Should a
problem occur which prevents the WDT
value from being reloaded, the WDT will
timeout and cause a full program reset.

The difficulty of using a WDT in many
programs is that when the full reset occurs,
any variables which are specifically set to
known values at the start of the program
will once more be reset to them. This
means, for example, that event counters
within the program will also be reset.

When the existing count value is of
importance, rather than use the WDT, the
program should be written so that an inter-
rupt (from a switch, for instance) can cause
the program to resume running without
being reset. However, if it does not matter
that the program restarts from the begin-
ning, as in some burglar alarm systems per-
haps, then the WDT can be beneficially
used.

To use the WDT, the PIC has to be set
for this function using the PIC
Configuration program. You will recall that
when configuring the PIC for RC and crys-
tal modes, WDT was not selected. Now,
though, reconfigure the PIC and set the
Watchdog on.

Connect RB0 to SW0 instead of LD0,
then load TK3TUT37.

#�������$
Observing the l.e.d.s on PORTB, press

and release switch SW0, setting on l.e.d.s
LD7 to LD1. After a brief pause following
the switch being released, the l.e.d.s will
all go out as the WDT times out, causing a
program reset. Repeatedly pressing SW0
overrides the WDT, resetting its count-
down value.

The WDT timing period can be changed
in the same way that we set the timing
prescaler for the real-time clock, i.e. using
bits 0 to 2 of OPTION_REG. Bit 3 of
OPTION_REG must always be set so that
the prescaler is allocated to the WDT. Try

changing the values of OPTION_REG bits
0 to 2; also see what happens when
STATUS bit 3 is set to zero. The prescaler
is set for its slowest rate in TK3TUT37.

The WDT cannot be disabled from with-
in an operational program. It can only be
turned off by reconfiguring the PIC.
Consequently, when you have finished
experimenting with the WDT, once again
reconfigure the PIC with WDT disabled.
Unless you do this, none of the other
demonstration programs will run correctly.

An independent RC oscillator is used by
the WDT and its timing is unaffected by
the frequency of the external oscillator that
controls the rest of the PIC.

Be aware that during development of the
Tutorials, it was found necessary to occa-
sionally run the WDT configuration twice
before the PIC would accept this mode.
The reason is unknown. If TK3TUT37
does not behave as expected, re-run the
configuration for WDT.

���
������"
29.1. Experiment with different timeout

periods for WDT, using the OPTION_REG
register settings.

����
������
CONCEPT EXAMINED

Misc Special Register bits

We have examined the use of quite a few
bits in the Special Functions Registers, but
not all of them (see Tables 4, 6 and 7).

����������
The first bit that we have not demon-

strated, although earlier reference has been
made to it, is the “light pull-ups” bit of the
OPTION register, bit 7. The pull-ups facil-
ity allows switches to be used without
biassing resistors as it introduces its own
pull-up biassing on each of PORTB’s pins
that are used as inputs (assume as a rule-of-
thumb that biassing has an equivalent resis-
tance of about 100k�).

Throughout the Tutorials so far,
OPTION_REG bit 7 has been held high,
initially because the default setting for the
register is 11111111, and secondly because
when we have been using the register we
have been setting bit 7 high in the initiali-
sation block.

We have not needed the pull-ups to be on
because the switches have usually been
connected to PORTA (which does not have
the facility) and they have their own exter-
nal biassing resistors connected (R17 to
R20). In other applications, though,
switches can be used on PORTB and exter-
nal biassing resistors omitted, using the
command BCF OPTION_REG,7 to acti-
vate the internal pull-ups.

Making use of these pull-ups, however,
means that PORTB’s input pins are active
low (rather than active high as in most of
the switch monitoring examples in the
Tutorials). This means that the PORTB
pins to which the switches are connected
are normally held high, a switch press then
taking them low. Consequently, it is the
low condition which needs to be looked for
when a switch is pressed.

A convenient way of detecting if any
switch has been pressed is to read PORTB
as an inverted value, using the command
COMF PORTB,W and read the Z flag of
STATUS. If a switch has not been pressed
a zero condition will exist following
COMF. However, if one or more switches
have been pressed, a zero condition will
not exist and appropriate action can then be
taken, as in the following example:

TESTSW COMF PORTB,W ; invert
PORTB
into W

BTFSS STATUS,Z ; is result =
0?

GOTO ACTION ; no, a
switch has
been
pressed, so
process it

Everyday Practical Electronics, June 2003 PIC Tutorial V2 Supplement – 39

��������� ��

�
��
���	�����

CLRF PORTA
CLRF PORTB
BANK1
CLRF TRISA
MOVLW B’00000001’
MOVWF TRISB
MOVLW B’10001111’
MOVWF OPTION_REG
BANK0

TESTON BTFSS PORTB,0
GOTO TESTON
CLRWDT
MOVLW 255
MOVWF PORTB
GOTO TESTON

FIGURE 4-1: OPTION_REG REGISTER (ADDRESS 81h)

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1

RBPU INTEDG T0CS T0SE PSA PS2 PS1 PS0 R = Readable bit
W = Writable bit
U = Unimplemented bit,

read as ‘0’
- n = Value at POR reset

bit7 bit0

bit 7: RBPU: PORTB Pull-up Enable bit
1 = PORTB pull-ups are disabled
0 = PORTB pull-ups are enabled (by individual port latch values)

bit 6: INTEDG: Interrupt Edge Select bit
1 = Interrupt on rising edge of RB0/INT pin
0 = Interrupt on falling edge of RB0/INT pin

bit 5: T0CS: TMR0 Clock Source Select bit
1 = Transition on RA4/T0CKI pin
0 = Internal instruction cycle clock (CLKOUT)

bit 4: T0SE: TMR0 Source Edge Select bit
1 = Increment on high-to-low transition on RA4/T0CKI pin
0 = Increment on low-to-high transition on RA4/T0CKI pin

bit 3: PSA: Prescaler Assignment bit
1 = Prescaler assigned to the WDT
0 = Prescaler assigned to TMR0

bit 2-0: PS2:PS0: Prescaler Rate Select bits

000
001
010
011
100
101
110
111

1 : 2
1 : 4
1 : 8
1 : 16
1 : 32
1 : 64
1 : 128
1 : 256

1 : 1
1 : 2
1 : 4
1 : 8
1 : 16
1 : 32
1 : 64
1 : 128

Bit Value TMR0 Rate WDT Rate

TABLE 7: OPTION REGISTER (Courtesy MICROCHIP)

RETURN ; yes, a
switch
has not
been
pressed

ACTION
; (routine that results if a switch has been
pressed goes here)

RETURN

Following COMF an AND statement
can be made to eliminate those pins which
are not associated with the switches.

You could try the light pull-ups option
by connecting “flying leads” to the
PORTB pins and touch their stripped ends
to the +5V and 0V lines. It is suggested
that you modify some of the earlier rou-
tines that use switches to prove how light
pull-ups can be used.

It is worth appreciating that if PIC pins
set as inputs are not connected to anything
when the light pull-ups are off, erratic
behaviour can result as the pins are not
sure which condition they should be in,
high or low (see the section in Tutorial 4,
Part 1, that discussed port pin safety).

����
���������

���������
There are two bits in the STATUS regis-

ter (see Table 4, Part 1) whose purpose and
use seem obscure:

STATUS bit 3 (PD): POWER-DOWN
bit. Set to 1 during power up or by a CLR-
WDT command. Cleared to 0 by a SLEEP
command.

STATUS bit 4 (TO): TIME-OUT bit.
Set to 1 during power up and by the CLR-
WDT and SLEEP commands. Cleared to 0
by a WDT time-out.

There are also other bits which are similar
in their setting to those that we have already
discussed, and so their examination is not
justified here. The bits are principally in the
INTCON and OPTION_REG registers
(Tables 6 and 7). A summary is as follows:

INTCON bit 0 (RBIF): RB port change
interrupt flag. Set when any of RB4 to
RB7 inputs change logic state. Has to be
reset in software.

INTCON bit 3 (RBIE): RBIF interrupt
enable bit; 0 = disable, 1 = enable.

(Malcolm discusses INTCON RBIF and
RBIE is his Interrupts article.)

OPTION_REG bit 5 (RTS): TMR0 sig-
nal edge response to signal on
RA4/TOCKI pin;

0 = increment on low-to-high transition
1 = increment on high-to-low transition.

Note that the default value for each bit
in OPTION_REG at power-up and reset is
1 (i.e. 11111111).

It is suggested that you write simple
routines, along the lines of those that have
been used in other demonstrations, to
establish for yourself what can be achieved
using these bits. It is also well worthwhile
reading through the PIC’s datasheet in its
entirety. There are minor aspects relating
to some of the commands that we have
discussed that deserve recognition if you
wish to delve more deeply into program-
ming these devices.

����
������
CONCEPT EXAMINED

INCLUDE files command
Embedded Configuration data
Embedded Data EEPROM values
Embedded PIC type data
Embedded Radix

CONNECTIONS NEEDED
L.C.D. as in Fig.7
CP20 to +5V OUT
CP21 to 0V OUT
Crystal oscillator

��������%����

�����
It is possible to input “library” files

into the main body of your program.
This can be done in one of two ways:
either by copying the section from a pre-
vious program (as preferred by the
author), or to call in a particular file to
be “included” at an appropriate point
within the program.

The latter files can have any extension
but it is customary to give them an INC
extension, standing for “include” and can
be called in by name as in the two exam-
ples given in Listing 38, and any number
of INC files can be called in.

In this example, the first included file is
called by the command:

INCLUDE TK3PIC16F84.INC

This file is a variant of one of
Microchip’s Include files and contains the
full range of EQUated register and bit val-
ues as listed in the datasheet for the
PIC16F84.

Microchip have INClude files available
for other PIC types (see later). It is essen-
tial that the EQUates INClude file should
be for the PIC family for which the main
code is written.

The second INClude file is at the pro-
gram’s end. The named file simply con-
tains the program code for the LCDFRM
and LCDOUT routines that are used in
TK3TUT30. The full listing of the exam-
ple program in TK3TUT38 shows that the
main body of the code is the same as that
used in TK3TUT30, but without the
EQUates held in TK3PIC16F84.INC, and
without the LCDFRM and LCDOUT
routines.

There are a number of restrictions that
apply when using INClude files, some of
which may depend on the assembly pro-
gram you use. TK3 operates on the follow-
ing principle:

� The INCluded filename must not con-
tain directory (folder) or drive path
information

� The file must be in the same directory
as the main calling code. Thus if the
directory address of the main code is
C:\PIC\TestFile.ASM then the INClude
file must also be within directory
C:\PIC\ e.g.:

C:\PIC\TK3PIC16F84.INC

There are two main regions in PIC
source codes from which INClude files
may be called when using TK3. Those
containing EQUates and Defines must be
placed near the top of the main code in the
region where the main code EQUates and
Defines are placed. They must occur
before the first ORG statement is made in
the main code. INClude files called in this
region must not contain true program
commands.

The second region is at any suitable
point within the body of the main code,
and may be the first command of that code
(i.e. at address location 5 – ORG 5), at the
end as shown here, or anywhere else that
you prefer.

Include files in the main body of the
code may contain their own Equates and
Defines, but not Includes. Beware of using
ORG statements within Include files since
they may disrupt the correct assembly of
the rest of the code.

In this example the Defines are stated
first, then the basic EQUates data is called
in, then the EQUates specifically required
as register names of your choice are then
stated. These must include the register
names needed by any INCluded program
code routines, in this case those needed by

40 – PIC Tutorial V2 Supplement Everyday Practical Electronics, June 2003

���������!����
��
���	�����!

#DEFINE BANK0 BCF STATUS,5
#DEFINE BANK1 BSF STATUS,5

INCLUDE TK3PIC16F84.INC ; call in EQUates data held in INC file

LOOP EQU H’20’ ; loop counter 1 – general
CLKCNT EQU H’21’ ; pre-counter for CLOCK
CLKSEC EQU H’22’ ; CLOCK main counter – secs
CLKMIN EQU H’23’ ; CLOCK – mins
CLKHRS EQU H’24’ ; CLOCK – hours
STORE1 EQU H’25’ ; general store 1
STORE2 EQU H’26’ ; general store 2
RSLINE EQU H’27’ ; RS line flag for LCD
LOOPA EQU H’28’ ; loop counter for LCD

ORG 0 ; Reset Vector address
GOTO 5 ; go to PIC address location 5
ORG 4 ; Interrupt Vector address
GOTO 5 ; go to PIC address location 5
ORG 5 ; Start of Program Memory at location 5

; (main body of program)

INCLUDE TK3TUT38.INC ; call in program code held in INC file

END ; final line

TK3TUT38.INC (but also see CBLOCK in
Tutorial 48).

Whilst some assemblers (including
TK3) permit INClude files to contain
EQUates and program code, users need to
be aware of the danger of the same
EQUates names being used for different
purposes in different INC files when more
than one is called.

When using TK3 as the assembler,
INClude files must not contain Macros,
which TK3 does not recognise.

(A Macro is a set of programmer-
defined instructions and directives which
are given a name. When the name is
encountered by the assembler, it is auto-
matically expanded into the defined set of
instructions. Thus a Macro is a useful
shorthand notation for sequences of code
that recur frequently within the program.
The subject of Macros is covered in
Malcolm Wiles’ PIC Macros and
Computed GOTOs, EPE Jan ’03, on the
PIC Resources CD-ROM.)

�������

���%���
����������
At various points in these Tutorials

you have had to set the PIC’s configura-
tion data via the PIC Configuration facil-
ity. It is possible to embed the data into
the program itself rather than set it sepa-
rately. This ensures that when the pro-
gram is loaded the PIC is automatically
configured correctly for the purpose
required.

If you look to the right of the Config
screen you will see a hexadecimal value
that changes when the various Config
option buttons are used. It is this hex value
which is used at the head of a program in
the form:

__CONFIG H’3FF1’

The value is preceded by __CONFIG
(two underscore characters plus the word
CONFIG). When the program is assembled
the CONFIG value is noted and then auto-
matically programmed into the designated
PIC location (at H’2007’). The statement is
placed in the second column of the assem-
bly code, as shown in the full program of
TK3TUT38.ASM.

To establish what value to use for a
particular program, simply set the
Config option buttons to the functions
required and use the resulting hex value
shown.

The value in this example is for Code
Protection (CP) off, Power on Reset (POR)
off, Watchdog Timer (WDT) off, crystal
XT (crystal frequencies up to 4MHz).

Near the head of TK3TUT38 you will
also see a statement commencing LIST P,
which will be discussed shortly.

������������

���
��&�����
In program TK3TUT33 the values for

the Data EEPROM are entered via switch-
es on the p.c.b. It is possible to set such val-
ues into the program itself and which are
then automatically placed into the Data
EEPROM at the correct locations when the
program is loaded.

The PIC’s Data EEPROM region com-
mences at H’2100’ and to program it the
ASM file requires an ORG statement at the
end pointing to this location, e.g.

ORG H’2100’

The values to be sent are prefixed “DE”
and then entered in any of the numerical
forms, such as follow:

DE 10, 9, 8 ,7 ,6 ,5, 4, 3, 2, 1, 0
DE 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
DE H’A’, H’B’, H’C’, H’FF’
DE ’A’, ’B’, ’c’
DE B’00000001’, B’00000011’

When the data is sent it is placed at con-
secutive addresses commencing from the
ORG value stated.

It is permissible to start the data at later
locations, for example H’2109’, which
would place the first value at EEPROM
location 9, rather than 0 as stated by
H’2100 ‘.

����������������

����
TK3 and Microchip’s MPASM assem-

bler allows the PIC type to be embedded
into the program. Whilst TK3 does not
need this to be embedded, the statement is
useful if the program is to be assembled by
MPASM (as might be the case with pro-
grams distributed to EPE readers who use
MPASM but not TK3).

TK3 only makes use of it to set the basic
PIC type, as can also be done through the
Select PIC Type screen option.

The PIC type statement is made in the
form:

LIST P = PIC16F84

and placed at the head of the program, as
shown in TK3TUT38.ASM.

��������
����
As stated several times in these

Tutorials, numerical values can be
expressed in various ways, depending on
the prefix used (e.g. H’ or B’). TK3 auto-
matically assumes that values without a
prefix are in decimal.

However, TK3 also follows MPASM’s
option and allows users to express hex or
binary values without the use of a prefix
and enclosing quotes, defining this
requirement in an initialisation line
which is prefixed with the statement
“LIST”. The term radix is used in this
context, and the radix is then equated to
be in decimal, hex or binary, according
to the user’s preference. For example,
the following sets the radix to be in
hexadecimal:

LIST R=HEX

Having specified the radix, any unpre-
fixed value encountered during assembly
will be taken to be in that notation. Thus if
the radix is decimal (R=DEC), 10 will be
taken as decimal ten. If the chosen radix is
hex (R=HEX), then 10 will be taken as
H’10’ (decimal 16). For a binary radix
(R=BIN), 10 will be interpreted as
B’00000010’ (decimal 2).

Obviously, when using a radix of hexa-
decimal or binary, any decimal values must
use the D’ prefix and final quote, e.g.
D’10’.

A single LIST statement can be used to
apply to the PIC type and the radix, sepa-
rating the two definitions by a comma, i.e.

LIST P = PIC16F84, R=DEC

It is worth noting perhaps that the author
has never wished to use a radix other than
decimal.

���
�������
31.1 Modify TK3TUT38 so that it calls

in the PAUSIT routine as a separate INC
file, named as you wish, and used in place
of that routine in the main code.

31.2 Examine printouts of the LST files
created for TK3TUT30, TK3TUT38 and
your own program as modified in 31.1.
Confirm for yourself that the three listings
contain the same equates and program
code. (Additional information about the
include files will be seen in the last two
listings.)

31.3 Set the CONFIG value of
TK3TUT38 so that program runs in RC
mode (set the RC/XTAL switch appropri-
ately otherwise the program will not run).

31.4 Modify program TK3TUT33 in
conjunction with TK3TUT19 so that a tune
is held as Data EEPROM statements which
are played when a switch is pressed. There
are 64 Data EEPROM locations available
(from H’2100’ to H’213F’).

Note that TK3 also allows Data EEP-
ROM values to be sent via a MSG (mes-
sage) file but ignore the facility for this
exercise (the facility is not available with
all assembly programs).

����
������
CONCEPT EXAMINED

PIC16F8x, PIC16F87x, PIC16F6x fami-
ly coding differences

PIC16F87x PORTA
PIC16F87x Data EEPROM use
PIC16F62x PORTA
PIC16F62x Data EEPROM use

We said earlier that most aspects of
using a PIC16F84 are common to other
PIC families, but that there are some dif-
ferences. Whilst these tutorials are not
intended to cover all aspects of PIC pro-
gramming, it is worth highlighting some
routines that have been discussed in rela-
tion to the PIC16F84 and for which slight-
ly different techniques are required for the
PIC16F87x and PIC16F62x families. This
section looks at those differences.

EXTRA BANKS
The first thing to note is that the

PIC16F87x and PIC16F62x devices both
have four Banks, whereas the PIC16F84
only has two. The extra two Banks are
numbered 2 and 3. STATUS bits RP0 and
RP1 (bits 5 and 6) control Bank selection.
It is preferable to ensure that only BANK0
is active when the program starts by issu-
ing the follow commands immediately
prior to the initialisation block:

BCF STATUS,RP0
BCF STATUS,RP1

RP0 and RP1 should be equated in the
general EQUates section as:

RP0 EQU 5 ; STATUS reg
RP1 EQU 6 ; STATUS reg

Unlike the PIC16F8x family,
PIC16F87x and PIC16F62x devices

Everyday Practical Electronics, June 2003 PIC Tutorial V2 Supplement – 41

have additional memory that can be
accessed in their Banks 1, 2 and 3.
Accessing this memory is accomplished
via PCLATH. See the author’s
PIC16F87x Extended Memory, June ’01,
and John Waller’s PCLATH text referred
to earlier. Both texts are on the PIC
Resources CD-ROM.

PIC16F87x PORTA
PIC16F87x devices allow their PORTA

pins to be variously used for analogue
input purposes as well as digital. The
default condition prior to a program being
run is for the analogue aspect to be active.
This means that the PIC has to be told
when PORTA is to be used for normal dig-
ital input/output, normally making this
statement as part of the initialisation
process.

To set PORTA for digital use, the
ADCON1 Special Register value has to be
set via BANK1 to 0000011x (where x
means that the value of that bit does not
matter), e.g.:

BANK1
MOVLW B’00000111
MOVWF ADCON1
BANK0

These MOVLW and MOVWF com-
mands would normally be included in the
BANK0 to BANK1 section of the pro-
gram’s initialisation routine where TRISA
etc. are being set.

ADCON1 should be equated in the gen-
eral EQUates section as:

ADCON1 EQU H’1F’ ; (Bank 1)

PIC16F87x DATA EEPROM USE
The PIC16F87x family need the

EQUates shown in Listing 39A when the
Data EEPROM read/write routines are
used. The full Write and Read listings are
held in TK3TUT39.ASM.

PIC16F87x WRITING TO DATA
EEPROM

Writing to the PIC16F87x family is car-
ried out by the routine in Listing 39B,
which is entered with W holding the EEP-
ROM byte address at which data is to be
stored. The data to be stored is held in
STORE1.

PIC16F87x READING FROM DATA
EEPROM

Reading from the PIC16F87x family is
carried out by the routine in Listing 39C,
which is entered with W holding the EEP-
ROM byte address to be read. The read-
back value is then held in W on exit.

PIC16F62x PORTA
PIC16F62x devices allow their PORTA

pins to be variously used for analogue
input purposes as well as digital. The
default condition prior to a program being
run is for the analogue aspect to be active.
This means that the PIC has to be told
when PORTA is to be used for normal dig-
ital input/output, normally making this
statement as part of the initialisation
process. To do so register CMCON has to
be set with the value of 7, e.g.:

MOVLW 7
MOVWF CMCON

42 – PIC Tutorial V2 Supplement Everyday Practical Electronics, June 2003

���������"�

EEDATA EQU H’0C’ ; Bank 2
EECON1 EQU H’0C’ ; Bank 3
PIR2 EQU H’0D’ ; Bank 0
EEADR EQU H’0D’ ; Bank 2
EECON2 EQU H’0D’ ; Bank 3
STATUS EQU 3 ; STATUS register
W EQU 0 ; Working register

flag
RP0 EQU 5 ; STATUS bank

reg
RP1 EQU 6 ; STATUS bank

reg
RD EQU 0 ; EECON1 reg
EEPGD EQU 7 ; EECON1 reg
EEIF EQU 4 ; PIR2 reg
WR EQU 1 ; EECON1 reg
WREN EQU 2 ; EECON1 reg
STORE1 EQU H’20’ ; or any conve-

nient address

���������"�

SETPRM BSF STATUS,RP1 ; set for Bank 2
BCF STATUS,RP0
MOVWF EEADR ; copy W into EEADR to set EEPROM address
BCF STATUS,RP1 ; set for Bank 0
MOVF STORE1,W ; get data value from STORE1 and hold in W
BSF STATUS,RP1 ; set for Bank 2
MOVWF EEDATA ; copy W into EEPROM data byte register
BSF STATUS,RP0 ; set for Bank 3
BCF EECON1,EEPGD ; point to Data memory
BSF EECON1,WREN ; enable write flag

MANUAL MOVLW H’55’ ; these lines cause the action required
MOVWF EECON2 ; by the EEPROM to store the data in EEDATA
MOVLW H’AA’ ; at the address held by EEADR.
MOVWF EECON2
BSF EECON1,WR ; set the “perform write” flag
BCF STATUS,RP1 ; set for Bank 0
BCF STATUS,RP0

CHKWRT BTFSS PIR2,EEIF ; wait until bit 4 of PIR2 is set
GOTO CHKWRT
BCF PIR2,EEIF ; clear bit 4 of PIR2
RETURN

���������"�

PRMGET BSF STATUS,RP1 ; set for Bank 2
BCF STATUS,RP0
MOVWF EEADR ; copy W into EEADR to set EEPROM address
BSF STATUS,RP0 ; set for Bank 3
BCF EECON1,EEPGD ; point to data memory
BSF EECON1,RD ; enable read flag
BCF STATUS,RP0 ; set for Bank 2
MOVF EEDATA,W ; read EEPROM data now in EEDATA into W
BCF STATUS,RP1 ; set for Bank 0
RETURN

�����������

SETPRM BANK1
MOVWF EEADR ; copy W into EEADR to set EEPROM address
MOVF PROMVAL,W ; get data value from PROMVAL and hold in W
MOVWF EEDATA ; copy W into EEPROM data byte register
BSF EECON1,WREN ; enable write flag

MANUAL MOVLW H’55’ ; these lines cause the action required by
MOVWF EECON2 ; by the EEPROM to store the data in EEDATA
MOVLW ‘AA’ ; at the address held by EEADR.
MOVWF EECON2
BSF EECON1,WR ; set the “perform write” flag
BANK0

CHKWRT BTFSS PIR1,EEIF ; wait until bit 4 of PIR2 is set
GOTO CHKWRT
BCF PIR1,EEIF ; clear bit 4 of PIR2
RETURN

�����������

PIR1 EQU H’0C’ ; Bank 0
EEDATA EQU H’1A’ ; Bank 1
EEADR EQU H’1B’ ; Bank 1
EECON1 EQU H’1C’ ; Bank 1
EECON2 EQU H’1D’ ; Bank 1
WREN EQU 2 ; EECON1 reg

EEPROM
write enable
flag

EEIF EQU 7 ; PIR2 reg
RD EQU 0 ; EECON1 reg

EEPROM
read enable
flag

WR EQU 1 ; EECON1 reg
EEPROM
write initiate
flag

PROMVAL EQU H’70’ ; accessed via
Bank 0 and
Bank 1

This action takes place in BANK0 and
can be done immediately prior to the
BANK1 initialisation block.

CMCON should be equated in the gen-
eral EQUates section as:

CMCON EQU H’1F’ ; Bank 0

PIC16F62x DATA EEPROM USE
The PIC16F62x family need the

EQUates shown in Listing 40A when the
Data EEPROM read/write routines are
used:

Note that one value, PROMVAL, is
required to be accessed via both BANK0
and BANK1. It needs to be EQUated to
occur at a location between H’70’ and
H’7F’. These locations are automatically
accessible via any of the four Banks, unlike
the “normal” locations between H’20’ and
H’6F’ (see Figure 4.3 in the PIC16F62x
datasheet).

The full Write and Read listings are held
in TK3TUT40.ASM.

PIC16F62x WRITING TO DATA
EEPROM

Writing to the PIC16F62x family is car-
ried out by the routine shown in Listing
40B, which is entered with W holding the
EEPROM byte address at which data is to
be stored. The data to be stored is held in
PROMVAL, which is located in both
Banks at or above H’70’

PIC16F62x READING FROM DATA
EEPROM

Reading EEPROM data from the
PIC16F62x family is carried out by the
routine in Listing 40C, which is entered
with W holding the EEPROM byte address
to be read. The read-back value is then held
in W on exit.

����
������
CONCEPT EXAMINED

Converting binary values to decimal

CONNECTIONS NEEDED
L.C.D. as in Fig.7
CP20 to +5V OUT
CP21 to 0V OUT
Crystal oscillator

You will recall that the clock counting
examples were carried out using binary
coded decimal (BCD) routines, which

then made outputting the data to the 7-
segment and l.c.d. displays comparative-
ly easy. There are many occasions when
it is considerably more convenient to
process data in binary than in BCD and
then to convert it to BCD prior to
display.

An excellent routine for doing this con-
version was provided to EPE by reader
Peter Hemsley. It allows a 3-byte value to
be converted to eight separate BCD digits.
An example of using his code in a practical
situation is held in TK3TUT41.ASM – run
it and then examine its code.

Peter’s code can be copied in to your
program and used as a “library” routine,
accessed via preparatory commands such
as shown in Listing 41.

The values BIN0, BIN1 and BIN2 in the
listing hold the processed values (in order
of LSB, NSB, MSB), which are then
copied into COUNT0, COUNT1 and
COUNT2 prior to conversion.

A call to Peter’s BIN2DEC routine is
then made, after which the values are
ORed with 48 to suit them to the l.c.d. and
leading zeros are blanked. The decimal
results are then output to the l.c.d. on line 1
starting at cell 0. If BIN1 and/or BIN2 are
not used, they should be cleared prior to
calling the BIN2DEC routine (e.g. CLRF
COUNT2 if BIN2 is not used).

Note that command SKPNC in the
BIN2DEC routine is an MPASM shortform
for “Skip if no Carry”. A list of such com-
mands recognised by TK3 and Microchip’s
MPASM assembly programs is shown later
in Table 8.

���
�������
33.1 Experiment with using different

values held in BIN.
33.2 Write a clock program in which the

hours, minutes and seconds are each incre-
mented as binary values and output to the
l.c.d. in decimal.

����
������
CONCEPT EXAMINED

Multiplication routine

CONNECTIONS NEEDED
L.C.D. as in Fig.7
CP20 to +5V OUT
CP21 to 0V OUT
Crystal oscillator

PIC16F84, PIC16F62x and PIC16F87x
families do not have multiplication com-
mands. EPE reader Peter Hemsley’s code
for multiplying a 2-byte value by another
2-byte value is shown TK3TUT42.ASM.
Run it and then examine its code.

An example of its use is shown in
Listing 42. The binary value to be multi-
plied is held in BIN0 (LSB) and BIN1
(MSB) and copied into MULCLSB and
MULCMSB. The value by which BIN is
to be multiplied is placed into MULPLSB
and MULPMSB and may be a numeral as
shown (H’0575) or from another pair of
bytes whose value has been set elsewhere
in the program. The answer is held, in
descending order of bytes, in PRODMSB,
PRODLSB, MULPMSB and MULPLSB,

Everyday Practical Electronics, June 2003 PIC Tutorial V2 Supplement – 43

�����������

GETPRM BANK1
MOVWF EEADR ; copy W

into
EEADR to
set
EEPROM
address

BSF EECON1,RD ; enable
read flag

MOVF EEDATA,W ; read
EEPROM
data now in
EEDATA
into W

BANK0
RETURN

��������������
��
���	������

; Binary to BCD conversion example
MOVF BIN0,W ; copy binary into COUNT
MOVWF COUNT0
MOVF BIN1,W
MOVWF COUNT1
MOVF BIN2,W
MOVWF COUNT2
CALL BIN2DEC ; call conversion
MOVLW B’10000000’ ; set LCD line
CALL LCDLIN
MOVF DIGIT8,W ; output to LCD
CALL LCDOUT

(repeat for DIGIT7 to DIGIT1)
RETURN

��������������
��
���	������

MOVF BIN0,W ; place value to be multiplied into MULC
MOVWF MULCLSB
MOVF BIN1,W
MOVWF MULCMSB
MOVLW H’75’ ; place value of multiplier into MULP
MOVWF MULPLSB
MOVLW H’05’ ; (multiply by H’0575’)
MOVWF MULPMSB
CALL MULTIPLY ; call multiply routine
MOVF MULPLSB,W ; copy answer into ANSWER
MOVWF ANSWER0
MOVF MULPMSB,W
MOVWF ANSWER1
MOVF PRODLSB,W
MOVWF ANSWER2
MOVF PRODMSB,W
MOVWF ANSWER3
RETURN

which are then copied into the four bytes
of ANSWER for use elsewhere as
required.

If the MSBs of MULC or MULP are not
used, they should be cleared before calling
MULTIPLY.

Peter’s code can be copied into your pro-
gram and used as a “library” routine,
accessed via preparatory commands such
as shown in Listing 42.

���
�������
34.1 Experiment with different BIN and

multiplying values.
34.2 Using the Multiply routine, extend

the clock program in TK3TUT30.ASM so
that a total seconds count since midnight is
shown in addition to the basic hours, min-
utes and seconds. Hint, first convert the
BCD values to binary. Several more
EQUated registers will be needed to hold
the interim calculations.

����
������
CONCEPT EXAMINED

Division routine

CONNECTIONS NEEDED
L.C.D. as in Fig.7
CP20 to +5V OUT
CP21 to 0V OUT
Crystal oscillator
PIC16F8x, PIC16F62x and PIC16F87x

families do not have division commands.
Peter Hemsley’s code for dividing a 2-byte
value by another 2-byte value is shown
TK3TUT43.ASM.

An example of its use is shown in
Listing 43. The binary value to be divided
is held in BIN0 (LSB) and BIN1 (MSB)
and copied into DIVIDLSB and
DIVIDMSB. The value by which BIN is to
be divided is placed into DIVISLSB and
DIVISMSB and may be a numeral as
shown (H’0103’) or from another pair of
bytes whose value has been set elsewhere
in the program. The answer is held, in
descending order of bytes, in DIVIDMSB,
DIVIDLSB, REMDRMSB, REMDRLSB
(REMDR being the undivided remainder).
DIVIDMSB and DIVIDLSB are then
copied into ANSWER1 and ANSWER0
for use elsewhere as required.

If either DIVIDMSB or DIVISMSB are
not used, the respective one should be
cleared before calling DIVISION.

Peter’s code can be copied into your pro-
gram and used as a “library” routine,
accessed via preparatory commands such
as shown in Listing 43.

���
�������
35.1 Write a clock program in which

only seconds are counted. Using the
Division facility, convert the seconds to
hours, minutes and seconds and output the
values to the l.c.d. in decimal.

����
������
CONCEPT EXAMINED

ADC conversion routine for PIC16F87x
family

This example is not capable of being run
using the PIC16F84 which does not have
analogue-to-digital (ADC) capabilities.

Analogue to digital conversion (ADC) is
a facility provided with the PIC16F87x
family. A full discussion of ADC conver-
sion is too lengthy for this tutorial and
readers are referred to Microchip’s data
sheets for this family.

However, in a nutshell, devices in the
PIC16F87x family each have several pins
which can be set for use as ADC inputs, the
allocation depending on the PIC type. The
PIC16F877 has eight pins, RA0 to RA5,
plus RE0 to RE2.

There is a choice of which pins are used
in ADC mode and the selection is made via
register ADCON1 (data sheet section
11-2). ADC channels are accessed via reg-
ister ADCON0, which also allows the con-
version clock rate to be adjusted.

PIC16F87x devices have a 10-bit ADC,
held in two bytes, ADRESH (MSB) and
ADRESL (LSB). Bit 7 (ADFM) of
ADCON1 controls whether the value is
justified to the left or right of those
registers.

An example program is given in
TK3TUT44.ASM, part of which is shown

in Listing 44. In the full listing, and from
within BANK1, ADCON1 is set for RA0,
RA1 and RA3 as ADC inputs, with ADFM
set for righthand justification (ADC bits 0
to 7 in LSB, and bits 8 and 9 as bits 0 and
1 of the MSB). It will be seen that TRISA
is then set for RA0, RA1 and RA3 as
inputs, for ADC use, but also RA4 as an
input for normal digital use, and RA2, RA5
as digital output.

The channel selection codes have been
set into named registers, CHAN0 to
CHAN7, and during the program the
desired ADC channel is set via ADCON0
using these register values.

In Listing 44, sampling is done each
time the timer rolls over, first for CHAN0
(RA0). Command MOVLW B’10000001’
configures bits 7 and 6 for a sampling
oscillator rate of Fosc/32, and sets bit 0 to
turn on the ADC facility. The value is then
ORed with the channel code (IORWF
CHAN0,W), and the combined value
MOVed into ADCON0.

Following a brief delay, conversion is
initiated (BSF ADCON0,GO) and the
ADC retrieval routine called (GETADC).
Once ADCON0,GO bit is found to be low,
the converted value is retrieved and output
in decimal to the l.c.d. (via SHOWVAL,
see full listing).

Channel 1 is then activated and
processed in a similar way, after which the
process is repeated from label MAIN.

���
�������
36.1 Experiment with the ADC routine,

accessing other available PIC16F877 pins.
A variable voltage can be applied to any
ADC pin via TK3’s preset VR3. Only
apply a voltage within the range 0V to 5V
d.c. if you are using an external source.

36.2 Study Microchip’s data sheet
(DS30292C) for more detail about using
the PIC16F877’s ADC facility.

����
�����
CONCEPTS EXAMINED

CBLOCK equates defining function
I2C interfacing to serial EEPROM chips

(e.g. 24LC256) from PIC16F87x family

�����	������

��
����
�
Up to now you have been equating val-

ues and addresses using the FILE1 EQU
H’20’ type of command. This has allowed
you to give names to Special File Register
address values, and to the normal data reg-
isters. There is another method through
which data register names can be given
addresses, and that is through Microchip’s
CBLOCK option, as can be used when
writing ASM files in their MPASM dialect.

TK3 also recognises the CBLOCK func-
tion (since version V1.4) and it represents a
very easy way to name addresses which are
not critical in terms of their actual loca-
tions. This function applies to any of the
data registers that lie typically between
H’20’ and the maximum address available
for a specific PIC type. It is not suitable for
use with Special Function Registers, whose
locations are fixed, or bit values, whose
values are also fixed.

CBLOCK is relevant to the discussion
now as programs TK3TUT45 and
TK3TUT46 will be combined in program

44 – PIC Tutorial V2 Supplement Everyday Practical Electronics, June 2003

������������

�
��
���	������

MAIN BTFSS INTCON,2
GOTO MAIN
BCF INTCON,2
MOVLW B’10000001’
IORWF CHAN0,W
MOVWF ADCON0
CALL DELAYB
BSF ADCON0,GO
CALL GETADC
MOVLW B’10000000’
CALL LCDLIN
CALL SHOWVAL
MOVLW B’10000001’
IORWF CHAN1,W
MOVWF ADCON0
CALL DELAYB
BSF ADCON0,GO
CALL GETADC
MOVLW B’11000000’
CALL LCDLIN
CALL SHOWVAL
GOTO MAIN

GETADC BTFSC ADCON0,GO
GOTO GETADC
MOVF ADRESH,W
MOVWF ADCMSB
BANK1
MOVF ADRESL,W
BANK0
MOVWF ADCLSB
RETURN

������������

�
��
���	������

MOVF BIN0,W
MOVWF DIVIDLSB
MOVF BIN1,W
MOVWF DIVIDMSB
MOVLW 3
MOVWF DIVISLSB
MOVLW 1
MOVWF DIVISMSB
CALL DIVISION
; divide by H’0103’
MOVF DIVIDLSB,W
MOVWF ANSWER0
MOVF DIVIDMSB,W
MOVWF ANSWER1
RETURN

TK3TUT47, along with some other files to
create a larger overall function, that of a
data logger with facilities for outputting to
a PC. Such combining of several program
sources is much aided by the CBLOCK
function.

Listing 45 shows an example of using
CBLOCK to allocate some of the registers
used in TK3TUT45.

When the assembler comes across the
CBLOCK statement it allocates ascending
address numbers to each of the names in
the list that follows. The program initially
sets the starting value in relation to any
equated data registers already declared.

For example, the program might have
declared the starting value to be H’20’. In
Listing 45, MEMHI would then be equated
by the assembler to be register H’20’, and
MEMLO then equated as H’21’, and so on.
The function is terminated when the
assembler finds the ENDC command at the
end of the list. The CBLOCK list in
TK3TUT45 is much longer than shown in
Listing 45.

It is also possible to state the CBLOCK
starting address through the CBLOCK
command itself. This can take the form of:

CBLOCK H’35’

in which case H’35’ will become the start-
ing address.

Or the form could be:

STARTVAL EQU H’22’
CBLOCK STARTVAL

This would allocate H’22’ as the start
address holding it in STARTVAL. Any
name can be used instead of STARTVAL,
and any value given to it, in any of the pre-
vious discussed forms.

The great advantage of CBLOCK is that
Include files can have a series of named
registers included within their own
CBLOCK function, and for those to be
automatically equated appropriately within
the main program. Examples of this will be
seen in the full listing of TK3TUT47 and
the programs it calls as Include files.

In TK3TUT45, because CBLOCK has
not been given a starting value, the value is
automatically allocated as TK3’s default of
H’20’, and all of its named registers are
numbered accordingly. The last value used
is then stored by TK3, for further use if
another file having a CBLOCK list is
Included.

Each time a called Include file is pulled
in by TK3’s assembler, any CBLOCK
names within that file are numbered con-

secutively from the last value. Care has to
be taken, of course, that multiple
CBLOCK names do not cause the maxi-
mum register limit of the PIC to be exceed-
ed, and that identical names are not found
in two or more Included files.

The latter situation will be reported as an
error condition by TK3. The former,
though, can only be assessed by inspection
of the .LST file generated during assembly.

#
�����������
���

���
�
Microchip manufacture a variety of non-

volatile serial EEPROM devices which can
be readily interfaced to the PIC16F87x
family, and possibly other PIC families too,
although the author has not done so. Serial
EEPROM devices allow large blocks of
data to be stored indefinitely and retrieved
at a later date, even after power has been
switched off and back on again. The facili-
ty is of enormous value in applications
such as data logging, for example.

The serial devices used by the author in
a number of designs are from the 24LCxxx
family, in particular the 24LC256 which
can store 256K bits of data, i.e. 32768
(32K) bytes of data. The “xxx” in the code
number indicates the thousands of bits that
the device can store. Microsoft datasheet
DS21203F covers the 24LC256.

The basic interfacing to a PIC16F87x is
shown in Fig.10.

The interface protocol used by these
chips is known as I2C, pronounced
I-squared-C (although you may also hear
I-TWO-C used as well). The meaning is
Inter-Integrated Circuit, i.e. one i.c. talking
to another. This protocol requires just two
signal wires to be connected between the
PIC and the EEPROM chip, one for data,
transmitted in serial format, and the other
for a clock signal.

The devices are manufactured so that up

to eight can be used in a block without
additional circuitry. The choice of which
device is accessed is determined by a 3-bit
binary address code that is transmitted to
the device as part of the data transfer
process.

Allocating a device to a particular
address is done by connections to the three
address pins, A0 to A2. The address is set
by the binary code on those pins (from dec-
imal 0 to 7, binary 000 to 111). Internally,
the pins are biased to 0V and so to set a pin
for 0V you simply leave it unconnected. To
set it high the pin is wired to the +5V
power line.

The program used by the author since
his 8-Channel Data Logger of Aug/Sept
’99 is a slightly modified variant of that
supplied by Microchip on their Technical
Library CD-ROM disk 2, download\
appnote\category\eeproms\00567.ZIP.
The routine for writing to the serial EEP-
ROM chip is in file 2WDPOLL.ASM, and
reading back from it is in file
2WSEQR.ASM. The author has slightly
modified the programs, particularly to
allow the Write facility to be used with a
variety of PIC clock rates.

The code shown in Listing 45A is that
which calls the Write to EEPROM routine
in Microchip’s program, allowing the MSB
and LSB of a 16-bit data value (two bytes)
to be stored at consecutive addresses in the
selected EEPROM chip. The full listing is
in program TK3TUT45.ASM.

Before calling the entry to the routine at
SAVESAMPLE your own program must:

� place the MSB of the data to be stored
into MEMHI

� place the LSB of the data to be stored
into MEMLO

� set WADDRH with the MSB of the
EEPROM chip address required

� set WADDRL with the LSB of the
EEPROM chip address required

� load W with the value corresponding to
the EEPROM chip to be accessed
(between 0 and 7)

� then use the command CALL
SAVESAMPLE

On entry to SAVESAMPLE, the value in
W (the required EEPROM chip number) is
placed into ECHAN. Then at label
WRMSB the value in MEMHI is pulled
into W, and Microchip’s WRBYTE routine
is called. The EEPROM address is then
incremented and the value in MEMLO is
pulled into W and again WRBYTE is
called. The EEPROM address is then
decremented back to the previous value
and an exit made from the routine.

It is important that your program should
avoid entry address
values which would
cause LSB rollover
when command INCF
WADDRL,F is made.

There is an addi-
tional requirement to
be met before this
routine can be used
and it is set at the
head of your program.
The requirement is to
set a delay value for
use by Microchip’s
program to suit the
PIC’s clock rate.

Everyday Practical Electronics, June 2003 PIC Tutorial V2 Supplement – 45

������������

�
��
���	������

CBLOCK
; automatically allocates equated
addresses to the following registers:

MEMHI
MEMLO
WADDRL
WADDRH
RADDRH
RADDRL

ENDC ; end of allocation
block

1

2

3

IC6
24LC256

A0

A1

A2

WP

SCL

SDA
GND

+V

8

4

7

6

5

10k

+5V

RC3

RC4

0V

Fig. 10 Basic connections between a
24LC256 and a PIC16F877x.

�����������

SAVESAMPLE
; Entry point for storing double byte data to serial EEPROM

MOVWF ECHAN
; set EEPROM chip number held in W into ECHAN

WRMSB MOVF MEMHI,W ; get data MSB
CALL WRBYTE ; store it to EEPROM
INCF WADDRL,F ; inc EEPROM address

WRLSB MOVF MEMLO,W ; get data LSB
call WRBYTE ; store it to EEPROM
DECF WADDRL,F ; set EEPROM address

back to entry value
RETURN

Microchip’s original program used sev-
eral series of NOP commands to provide
several delays in the Write routine, varying
between three and five NOPs, depending
on the sub-section of the routine. Five
NOPs is taken as the delay unit for
Microchip’s program, which was written
for use at 4MHz, and each NOP provides a
delay of 1�s at 4MHz.

To simplify the program’s use with dif-
ferent clock rates, the author has replaced
the several series of NOPs with commands
that call a given number of NOPs through
a definition at the head of the program:

#DEFINE SERIALDELAY CALL
CYCLESx

where “x” in CYCLESx is replaced by a
number between 4 and 25. A value of 4
gives the minimum delay possible. A value
of 5 is taken as suitable to clock rates of
4MHz and below. A value of 25 would suit
the program to a clock rate of 20MHz.

A series of consecutive labels is includ-
ed in the author’s program that accesses
Microchip’s routines, e.g.:

CYCLES25 NOP
CYCLES24 NOP
CYCLES23 NOP
etc., through to:
CYCLES5 NOP
CYCLES4 RETURN

Thus if the definition is

#DEFINE SERIALDELAY CALL
CYCLES25

the program is assembled such that com-
mand SERIALDELAY is replaced by
CALL CYCLES25. When run, the pro-
gram thus calls label CYCLES25 from the
various points at which the command
SERIALDELAY is given. At the called
label, each NOP in the list down to
CYCLES5 is then actioned, followed by an
exit at CYCLES4.

The number of NOPs introduced in the
sequence is related to the rate at which the
PIC performs each command with respect
to the clock rate. Recall that PICs effec-
tively divide the clock rate by four. Thus a
clock rate of 4MHz results in an effective
cycle rate of 1MHz.

PIC commands take either one or two
cycles to complete (as shown in Table 1,
part 1). A CALL takes two cycles to per-
form, NOP takes one, and RETURN takes
two.

If CALL CYCLES4 is performed, the
delay is four cycles, CALL = 2, RETURN
= 2. CALL CYCLES5 takes five cycles,
four for CALL/RETURN plus one for the
NOP, and so on.

The object is to introduce a delay of a
minimum of 1�s between various actions
within Microchip’s program, although it
does not matter if the delay is longer. To
calculate the CALL CYCLESx value use
the following method:

� Required clock rate = 20MHz
� Assume Microchip’s 4MHz rate

requires 5 cycles
�Your rate therefore = 5 × (20 / 4)

= 5 × 5 = 25
� Thus you would need to use CALL

CYCLES25

�������%
�

��
�������
�
The technique for reading double-byte

data back from a serial EEPROM chip is
very straightforward. It just involves the
following:

� set RADDRH with the MSB of the
EEPROM chip address required

� set RADDRL with the LSB of the
EEPROM chip address required

� then use the command CALL READ

Microchip’s read data routine is then
entered and the data recalled from the
given EEPROM address is put as the MSB
into MEMHI, and as LSB into MEMLO.
You can then use these values as you wish.

����
�����!
CONCEPTS EXAMINED

Outputting serial data from PIC16F87x
to PC at selected Baud rate

The PIC16F87x family allow data to be
output serially from PORTC RC5 and RC6
as a serial stream conforming to the RS-
232 protocol and at a chosen Baud rate.
The Baud rate required is normally set via
a routine called during a program’s initial-
isation procedure. That Baud rate then
remains set for the rest of the program.

The Baud rate can be set for one of many
options offered through Microchip’s
datasheet DS30292A for the PIC16F87x
family. The selection can be made as dis-
cussed in the datasheet’s section 10, with
particular reference to Tables 10.3, 10.4
and 10.5.

The datasheet also discusses many
aspects of serial output and input and you
are referred to it for detailed information.
In this Tutorial we simply show a practical
example of outputting data, in relation to
the mode the author has frequently used.

�������������
���

The routine for setting the Baud rate is
shown in Listing 46. On entry at label
SETBAUD, a value (20 in this case) is
loaded into W (within BANK1) and placed
into the PIC’s SPBRG register. The value is
in respect of a 9600 Baud rate when using
a clock rate of 3·2768MHz.

Regrettably, Microchip do not give the
SPBRG value for a 3·2768MHz crystal, but
they do give two formulae for calculating
the value in relation to PIC clock and asyn-
chronous Baud rates. The first formula is
used when register TXSTA bit BRGH = 1
(high speed). The second is when BRGH =
0 (slow speed).

Baud = Fosc / (16 × (X + 1) for BRGH = 1
Baud = Fosc / (64 × (X + 1) for BRGH = 0

where Fosc is the PIC’s clock rate and X is
the SPBRG value.

Microchip state that it may be advanta-
geous to use BRGH = 1 even for slower
Baud clocks, because its equation can
reduce Baud rate error in some cases.

Transposing the formula when BRGH =
1, we get:

X = (Fosc / (Baud × 16)) – 1

Thus for Fosc = 3.2768MHz and Baud =
9600 we get:

X = (3276800 / (9600 × 64)) – 1
= (3276800 / 153600) – 1
= 20.333

Only integer (whole number) values can
be used and so the calculated SPBRG value
is 20. Putting the value of 20 into X of the
formula, we get an actual Baud rate of:

3276800 / (16 × (20 + 1))
= 3276800 / 336 = 9752·38

This represents an
error of (9752.38 –
9600) / 9600 =
0.015873%

An SPBRG value of
21 produces an error of
0·030303%, and
19 would give
1·06667%. An SPBRG
value of 20 is thus a
reasonable one to use
(a certain amount of
latitude is normal and
the PC’s serial input
routines should toler-
ate minor slippage).

A s y n c h r o n o u s
mode is needed for
the example in
Listing 46. The
datasheet shows in its
Fig.10-1 that the
TXSTA register
needs bit 4 (SYNC)
cleared for this mode.
Bit 2 is BRGH and, as
indicated above, is set
to 1.

Bit 7 (CSRC) is
“Don’t Care” for
asynchronous mode.

Bit 6 (TX9) selects
between 9-bit and

46 – PIC Tutorial V2 Supplement Everyday Practical Electronics, June 2003

��������������
��
���	������

; set serial output Baud rate
; as shown is set for 9600 Baud with a 3.2768MHz clock rate

SETBAUD
BANK1
MOVLW 20 ; BRG for 9600 Baud from

3·2768MHz, brgh=1
MOVWF SPBRG
MOVLW B’00000100’ ; set sync=0, brgh=1 + ninth bit

not set
MOVWF TXSTA
BCF PIE1,TXIE ; clear interrupt bit
BANK0
MOVLW B’10000000’ ; set SPEN bit (7) of RCSTA reg
MOVWF RCSTA
BANK1
BSF TXSTA,TXEN ; enable transmission (bit TXEN)
BANK0
RETURN

�����������

; routine that causes the actual output of a serial data byte
SERIALSEND

BTFSS PIR1,TXIF ; wait for TXIF bit 4 to go high
GOTO SERIALSEND ; (showing TXREG empty)
MOVWF TXREG ; put val (held in W) in TXREG

ready for sending
RETURN

8-bit transmission (1 and 0 respectively).
8-bit is required in the example.

Bit 5 (TXEN) enables/disables transmis-
sion (1 and 0 respectively).

Bit 3 is unimplemented in the
PIC16F87x and so ignored.

Bit 1 (TRMT) indicates whether the
transmit shift register is empty (1) or full
(0).

Bit 0 is the 9th bit of transmit data (and
can also be used as a parity bit). It is not
needed in the example, and so is set to 0.

Consequently, following the setting of
SPBRG, TXSTA is loaded with
B’00000100’. Next the Transmit Interrupt
Enable bit (TXIE) of register PIE1 is
cleared to disable the interrupt, and
BANK0 is then selected again.

Next the SPEN bit (7) of register
RCSTA is set to enable pins RC6 and RC7
for serial port mode. After which register
TXSTA bit TXEN is set within BANK1 to
enable transmission. Setting back to
BANK0 follows, and the Baud rate setting
routine is exited.

In other applications, the only values
that concern you are those for Baud rate
(SPBRG) and the initial setting of TXSTA.
The other statements can be repeated par-
rot-fashion.

The Microchip INClude file
PIC16F877.INC holds the values for the
named registers and bits, and allocates
them when imported to the program.

��
����������
Listing 46A shows the routine that caus-

es the actual output of a serial data byte.
The SERIALSEND routine is entered with
W holding the value to be transmitted. A
wait is then made until bit TXIF of the
PIR1 register goes high, indicating that
register TXREG is ready to be loaded with
the byte to be sent.

As soon as TXREG is loaded with the
value in W, the transmission is then auto-
matic, and out of your hands!
Consequently, the routine is then exited
and your program can get on with what
else it wants to do, typically at this time to
get the next value to be transmitted until all
values have been sent.

PIR1 TXIF automatically goes low
when TXREG is loaded, staying low until
transmission of that byte has been com-
pleted.

So that’s all there is to transmitting data
from a PIC as a stream of serial data at a
known Baud rate. The destination is likely
to be a PC, but it could be sent to any
device capable of reading serial data.

Describing how a PC (or other device)
receives the data is beyond the scope this
series, but EPE has published several
examples of PC programs that do so. The
BioPIC Heart Monitor of June ’02,
shows an example written in QBasic. The
Earth Resistivity Logger of Apr/May ’03
shows an example written in Visual Basic
(VB6) using Robert Penfold’s
INPOUT32.DLL as the active software
interface.

We shall also be publishing shortly Joe
Farr’s serial input/output OCX facility for
use with Visual Basic. Joe has written it
specially for EPE and it will be a boon to
users of VB. Details will be announced in
due course.

It should be noted that whilst the author
has found QBasic can input serial data

directly from a PIC, VB6 behaves more
reliably when a dedicated RS-232 chip is
used between the PIC and the PC. An
example of using a MAX232 device in this
role is shown in the Earth Resistivity
Logger Part 1, April ’03.

����
�����"
CONCEPT EXAMINED

Practical example of recording analogue
data to serial EEPROM and subsequent
outputting as RS-232 serial data.

This Supplement does not have enough
space to include Tutorial 39 and it has been
placed on the PIC Resources CD-ROM as
EPE PIC Tutorial V2 Extra.

Nor has there been space to include the
table of Reset Conditions for the
PIC16F84. This may be found on
Microchip’s datasheet 30430C. Datasheets
30292C and 40300 are for the PIC16F87x
and PIC16F62x families respectively.
Browse www.microchip.com.

����
������
CONCEPTS EXAMINED

Programming
PICs vs. Hardware
Summing-up

�
��
����
To the uninitiated, it may seem that a

software programmer simply sits down and
writes all the commands in a single opera-
tion. If only it were that simple! Before a
single line of code is written, there is a
great deal of thought involved about the
overall objective and how each step on the
way to achieving it might be performed.
Part of this consideration relates not only to
the logic of the software routines, but also
to the control requirements of external
interfaces.

There are two schools of thought about
the planning. The first considers that the
use of flow charts is an essential require-
ment. The other doesn’t! The advantage of
using a flow chart is that it shows the ques-
tions and answers of each stage of the pro-
gram in a diagrammatic form. Theory says
that this chart then enables the code to be
written to meet each of the requirements
illustrated.

The use of a flow chart certainly helps in
concentrating immediate thought process-
es, and in recapturing concepts in the
future, but it cannot display the command
by command reasoning of each line of
code. Only the code itself shows that,
unless you translate each line of code into
lengthy textual comments, in which case
there is the danger of getting bogged down
with words.

Additionally, there is always the possi-
bility that some logical consideration has
been omitted from the flow chart and
which only comes to light once you try to
run the program, requiring the chart to be
redrawn as well as the software having to
be rewritten. The author finds that the
detailed thinking about the program struc-
ture already builds up as a mental flow
chart which does not require to be set down
on paper.

It is acknowledged that in a commer-
cial situation it would be mandatory for
the program structure to be well

documented with flow charts – the pro-
gram might eventually need to be
changed by someone other than the orig-
inal program writer. In that case, the
flow chart would give a more immediate
insight into the original programmer’s
thought processes.

Although the author does not use flow
charts when programming, let us not deter
you from drawing them if you prefer to do
so. You may well find that they help you to
grasp what you are doing more readily than
just relying on your mental “visualisation”
processes.

To discuss flow charts more fully is
beyond the scope of these Tutorials, but
you will find examples of them on
Microchip’s Technical Library CD-ROM.
It has to be said, though, that even in that
publication, which is full of PIC datasheets
and program listings, flow charts are not
widely used.

�����'��'�����
Whether or not you use flow charts, you

should never attempt to write the entire
program from beginning to end in one
operation. That way can lead to extensive
problems when you try to debug the pro-
gram having found that it does not do what
you expected. Take each routine stage-by-
stage. Get one small section of code work-
ing before you move onto the next. Then
get that next small section working before
you try to join it to the previous part. “Be
methodical” is the key command when
programming.

In many ways, the manner in which
these Tutorials have been presented has
been along those lines. We have tried to
show you individual structures which first
stand on their own, and then are extended
or joined to others to achieve a larger oper-
ational system. Taking TK3TUT2 as the
effective starting point, that program used
only 16 command lines. Gradually we
developed other programs as stand-alone
routines. Then things began to take a
broader structure as concepts were inte-
grated into a more sophisticated whole.
With TK3TUT33, 232 commands were
sent to the PIC.

As you get further into PIC program-
ming, you may decide that you would
like to write code in conjunction with a
simulation program. These help you to
debug code on your PC before down-
loading it to the PIC. They will not
replace the thought processes needed
when writing code, but they will let you
find many (but not all) of the errors more
quickly.

However, the author finds it very easy to
check program operation when the code is
in the PIC and the PIC is connected to its
various interfaces. Had the PIC16F84 not
been an EEPROM device, then this would
not be an acceptable technique, but it is
rapidly reprogrammable and so is usable as
a live test-bed.

One further point, when writing a pro-
gram the author finds it useful to supple-
ment its software file name with a suffix
number, increasing the number at each
save of a major addition or change to the
previous code written. This allows an earli-
er version to be recalled should the need
arise. Thus you would number as, for
example, PICIT01.ASM, PICIT02.ASM,
PICIT03.ASM, etc.

Everyday Practical Electronics, June 2003 PIC Tutorial V2 Supplement – 47

�����()����
�#�
�
As enormously beneficial as the use of a

microcontroller can be, there is the likeli-
hood that it may be regarded by the inexpe-
rienced as the ultimate answer to all elec-
tronic circuit design. This is most definitely
not the case. All that a microcontroller will
do is assist in using software commands to
replace a fair number of operations for
which many electronic components would
otherwise be needed. It cannot substitute
for all electronic requirements.

There are also situations in which a
microcontroller can be used but it is not
necessarily desirable that it should. What
you will discover as you get further into
programming, is that the act of program-
ming a PIC to replace a given number of
logic chips takes far longer than if you
were to design a circuit that performed the
same function but only used such chips.

Unless you actually want to get a PIC to
do something because it can and you see it
as a challenge, always ask yourself if the
additional development time is worth it in
order to save a chip or two.

�����'��
When writing software, you will find

much frustration through the inability to
immediately see the bug in a program rou-
tine. Eventually, though, you will spot it
and the relief and exhilaration of at last get-
ting that part to work is enormous. In that
frame of mind, you will move onto writing
the next sub-routine with the utmost confi-
dence and anticipation of not making a
mistake on this one.

Would that it were so! You can, and you
will, make mistakes. But the ultimate satis-
faction of a complete working design
makes it all worthwhile.

If you can’t take occasional bouts of des-
peration, isolation from friends and family,
followed by periods of ecstasy and feelings
of well-being towards all humanity, leave
programming alone. The author, though,
has become a “programming-addict” and
thrives on the challenges, come what may!

Finally, remember that Murphy’s Law
has its most powerful influence when
programming is involved. If the microcon-
troller or other computer can misunder-
stand what you mean by your commands, it
will. It is up to you to see the way in which
each and every one of your commands will
actually be interpreted. You are the intelli-
gent one, the computer simply obeys your
commands!

����������*�������

�����

Now to give your understanding of PIC

programming (and your logical thinking) a
bit of a test!

Load TK3TUT48.ASM into your text
editor. Add an appropriate initialisation
routine at the beginning, and add a suitable
set of l.c.d. operating routines as illustrat-
ed earlier. Save the code as two slightly
different file names, then work on the
second file.

TK3TUT48 has a number of bugs
deliberately included – your task is to
debug the program and get it working as a
frequency counter! Some of the deliberate
errors will be reported by the Assembler
following assembly. These are “literal”
errors which anyone might make while

creating a PIC program – simple slips in
thinking. The others, though, are “logical”
errors – much more significant errors in a
programmer’s analysis of a situation and
its interpretation, but still errors anyone
could make.

First of all, get the l.c.d. to display the
opening message correctly (and without
the program “crashing”). Then, with the
aid of a signal generator (0V/5V output
logic level) set to about 10kHz (you must
decide which PIC input pin to use), solve
the remaining logical problems. You’ll
probably curse the author a few times
before you solve it all, but keep at it!

Having solved it (and felt the satisfac-
tion of success!), think about how switches
and other routines could extend the
counter’s range.

����������*����%��

������%�
�����
Microchip web site:

http://www.microchip.com
EPE web site:

http://www.epemag.wimborne.co.uk
EPE PIC-project source code files:

ftp://ftp.epemag.wimborne.co.uk/pub/PICS

%�
���
�
������
The following texts are on the PIC

Resources CD-ROM:
Asynchronous Serial Communications

(RS-232), John Waller, unpublished
EPE StyloPIC (precision tuning of musi-

cal notes), John Becker, July ’02

How to Use Graphics L.C.D.s with PICs
(detailed control information for
PIC16F877), John Becker, Feb ’01
(Supplement)

How to Use Intelligent L.C.D.s, Julyan
Ilett, Feb/Mar ’97

PIC Macros and Computed GOTOs,
Malcolm Wiles, Jan ’03.

PIC Magick Musick (illustrates use of
40kHz ultrasonic transducers), John
Becker, Jan ’02

PIC to Printer Interfacing (Epson dot
matrix printers), John Becker July ’01

PIC Toolkit Mk3, John Becker (PIC pro-
grammer p.c.b./circuit for TK3), Oct ’01

PIC Toolkit TK3 for Windows (software
details), John Becker, Nov ’01

PIC16F87x Additional Memory (how to
use it), John Becker, June ’01

PIC16F87x Microcontrollers (review),
John Becker, April ’99

PIC16F87x Mini Tutorial, John Becker,
Oct ’99

Programming PIC Interrupts, Malcolm
Wiles, Mar/Apr ’02

Using I2C Facilities in the PIC16F877,
John Waller, unpublished

Using PICs with Keypads (16-key “data”
keypads), John Becker, Jan ’01

Using Square Roots with PICs, Peter
Hemsley, Aug ’02

Using TK3 with Windows XP and 2000,
Mark Jones, Oct ’02

Using the PIC’s PCLATH Command,
John Waller, July ’02

�

48 – PIC Tutorial V2 Supplement Everyday Practical Electronics, June 2003

TABLE 8 MPASM SHORTHAND COMMANDS The following MPASM
shorthand commands are recognised by TK3.

Command Equiv. coding Meaning

ADDCF f,d BTFSC STATUS,C Add Carry to File
INCF f,d

ADDDCF f,d BTFSC STATUS,DC Add Digit Carry to File
INCF f,d

B k GOTO k Branch to
BC k BTFSC STATUS,C Branch on Carry to k

GOTO k
BDC k BTFSC STATUS,DC Branch on Digit Carry

GOTO k
BNC k BTFSS STATUS,C Branch on No Carry

GOTO k
BNZ k BTFSS STATUS,Z Branch on Not Zero

GOTO k
BNDC k BTFSS STATUS,DC Branch on No Digit Carry

GOTO k
BZ k BTFSC STATUS,Z Branch on Zero

GOTO k
CLRC BCF STATUS,C Clear Carry
CLRDC BCF STATUS,DC Clear Digit Carry
CLRZ BCF STATUS,Z Clear Zero
MOVFW,f MOVF f,W Move File to W
NEGF f,d COMF f,F Negate file

INCF f,d
SETC BSF STATUS,C Set Carry
SETDC BSF STATUS,DC Set Digit Carry
SET Z BSF STATUS,Z Set Zero
SKPC BTFSS STATUS,C Skip on Carry
SKPDC BTFSS STATUS,DC Skip on Digit Carry
SKPZ BTFSS STATUS,Z Skip on Zero
SKPNC BTFSC STATUS,C Skip on No Carry
SKPNDC BTFSC STATUS,DC Skip on No Digit Carry
SKPNZ BTFSC STATUS,Z Skip on Not Zero
SUBCF f,d BTFSC STATUS,C Subtract Carry from File

DECF f,d
SUBDCF f,d BTFSC STATUS,DC Subtract Digit Carry from File

DECF f,d
TSTF f MOVF f,F Test File

Where: d = destination (0 or 1 – W or F) f = file k = literal value

	Time Out to L.C.D.
	Clocking On
	Exercise 23
	Tutorial 24
	Timing Accuracy
	Exercise 24
	Tutorial 25
	Exercise 25
	Tutorial 26
	Exercise 26
	Tutorial 27
	Interrupts
	Timer Interrupt
	External Interrupt
	Interrupt Edge
	Exercise 27
	Tutorial 28
	Exercise 28
	Tutorial 29
	Watch It!
	Exercise 29
	Tutorial 30
	Option Bit 7
	Other Bits Not Discussed
	Tutorial 31
	Include Files Command
	Embedded Configuration Data
	Embedded Data EEPROM Values
	Embedded PIC Type Data
	Embedded Radix
	Exercise 31
	Tutorial 32
	Exercise 33
	Tutorial 34
	Tutorial 33
	Exercise 34
	Tutorial 35
	Exercise 35
	Tutorial 36
	Exercise 36
	Tutorial 37
	CBLOCK Command structure
	Writing to Serial EEPROM
	Reading From Serial EEPROM
	Tutorial 38
	Setting Baud Rate
	Serial Output
	Tutorial 39
	Tutorial 40
	Programming
	Stage-by-Stage
	PICS vs Hardware
	Summing-up
	Appendix A
	Appendix B
	Further Reading

