
EEPPEE PPIICC
TTUUTTOORRIIAALL VV22

Everyday Practical Electronics, May 2003 PIC Tutorial V2 Supplement – 17

Quite simply the easiest
low-cost way to learn

about using PIC
Microcontrollers!

In this part we play with switches, make
noises, count times, and generally have

fun with some more PIC16F84 commands!

��������	�
 PART TWO

EPE PIC
TUTORIAL

����

����
CONCEPTS EXAMINED

Switch monitoring
Command ANDLW
Command ANDWF
Command ADDWF
Command ADDLW
Nibbles
STATUS bit 1
Digit Carry flag
Bit code DC

CONNECTIONS NEEDED
All Port B to all l.e.d.s.
Port A RA0-RA3 to switches SW0-

SW3 (via CP19-CP16)
CP21 to +5V OUT
CP20 to 0V OUT
Capacitor C7 as 1�F
Preset VR1 set to minimum resistance

(fully clockwise)

From hereon we shall usually omit the
program initialisation commands that have
up to now been shown at the top of each
listing. Some will be included where they
help to clarify the program. Otherwise,
assume that any name used in the listing
extracts shown will have been defined or
equated in the headings. The commands
are included in full on the disk file pro-
gram listings (source code).

We now turn to looking at how data is
input via switches and shall continue to
show the results on individual l.e.d.s. In
Tutorials 21 and 22 we shall look at 7-seg-
ment l.e.d.s and alphanumeric l.c.d.s as the
output displays.

First connect TK3’s pushbutton switch-
es SW0, SW1, SW2, SW3 (via CP19,
CP18, CP17, CP16) to PORTA pins RA0,
RA1, RA2, RA3 respectively. Connect the
switch power pin CP21 to the +5V OUT
pin, and switch power pin CP20 to the 0V
OUT pin. Port pins RA0 to RA3 are now

connected so that they are normally biased
low (to 0V) but will go high (+5V) when
their respective switches are pressed.

Run TK3TUT8.HEX. Pushing switch
SW0 on and off, PORTB’s l.e.d.s will be
seen to go on and off in a binary sequence
when the switch is on (pressed), but will
remain in the last condition when the
switch is off (released). In this example,
the program tests whether the status of
switch SW0, which is connected to
PORTA RA0 (bit 0), is on or off. If the
switch is on then the counter variable,
COUNT, is repeatedly added to (by 1 in
this example). A value of zero is added to
the count if the switch is off. The count
value is output to PORTB.

First let’s look at two of the commands
introduced here, ANDLW and ADDWF.
Their counterparts ANDWF and ADDLW
will also be examined.

��������������
���������

As no doubt most of you are aware, if
one binary number is ANDed with anoth-
er, then only if the same bits of both num-
bers are set (1) will the answer also have a
1 in that position. Any zeros on either or
both sides for any bit will automatically
produce a result of 0, e.g.:

First number: 01110010
Second number: 01011001
ANDed answer: 01010000

This technique is widely used in elec-
tronics and computing, the final answer
determining the subsequent action to be
taken by a circuit or software routine.

There are two ANDing commands
available with PICs, ANDLW (AND
Literal to W), and ANDWF (AND W with
File value). Suppose that the first number
in the foregoing examples (01110010) is
already contained within W, we then wish
to AND it with a fixed number as stated in
a program command. Assuming that the
fixed number is the second number quoted,
the command is:

ANDLW B’01011001’

The PIC ANDs the second (literal) num-
ber with that already held in W. The
answer (01010000) is retained by W and is
available to be further manipulated or
copied into any file as specified by the
command which follows ANDLW. You
could, for example, use the command
MOVWF PORTB which will turn on
l.e.d.s LD6 and LD4 (01010000).

Any of the three numerical formats may
be used with ANDLW, e.g. B’00011111’
(binary), H’1F’ (hexadecimal), 31 (deci-
mal), are all legitimate and equal. It is also
legitimate to use a name that has been
equated with a value, e.g. ANDLW
PORTB (which would AND 6 with W
since we have previously specified that the
name PORTB represents the value 6).

The command ANDWF is used to AND
an existing value within W to a value with-
in a named file, either retaining the answer
in W (ANDWF FILENAME,W) or putting
back in the named file (ANDWF
FILENAME,F).

It is not possible to directly AND the
contents of two files together, the value of
one or other file must have already been
moved into W before the ANDing can take
place. With both commands ANDLW and
ANDWF, if the answer is zero, the Zero

�
��
��������
��
��
�	�����
BEGIN CLRF COUNT
LOOP MOVF PORTA,W

ANDLW B’00000001’
ADDWF COUNT,F
MOVF COUNT,W
MOVWF PORTB
GOTO LOOP

flag of STATUS is set. If the answer is
greater than zero, the Zero flag is cleared.
Zero is the only flag affected by an AND
command.

��������������
���������

There are two ADDing commands avail-
able with PICs, ADDLW (ADD Literal to
W), and ADDWF (ADD W to a File value).
Command ADDLW is used where a fixed
number (literal) within a program is to be
added to an existing value within W and
which has been obtained by a previous
operation. Suppose that W holds the
answer produced in the previous ANDing
example, 01010000 (decimal 80), and you
wish to add a fixed value to it, 53 decimal
(00110101), for instance. The command
would be:

ADDLW 53 (or ADDLW H’35’ hex-
adecimal, or ADDLW B’00110101’ binary).

The answer in this instance is 10000101
(decimal 133) and is retained in W for fur-
ther use or copying into a file, e.g.
MOVWF PORTB.

Command ADDWF adds the contents of
W to the value within a stated file. The
answer can be held in W (ADDWF
PORTB,W) or put back into the named file
(ADDWF PORTB,F).

Three flags within STATUS are affected
by any ADD command, Carry, Zero and
Digit Carry. If the answer to an addition is
greater than 255, the Carry flag is set, oth-
erwise it is cleared. If the answer equals
zero, the Zero flag is set, otherwise it is
cleared. The third flag, Digit Carry, you
have not encountered yet. Although the
concept is not illustrated until later
(Tutorial 19), it is appropriate to describe it
now.

If you imagine that an 8-bit binary num-
ber (e.g. 10110110) is split into two halves
(known as “nibbles”), 1011 and 0110, the
righthand nibble is monitored by the PIC
as a separate digit and it is served by its
own flag, the Digit Carry flag. If an addi-
tion takes place which produces a result
greater than 15 (binary 1111) for that nib-
ble, the Digit Carry flag is set, otherwise it
is cleared.

�
��
���������
Having described the new terms, we

shall now detail what happens in Listing 8.
As said at the start of Tutorial 7, switches
SW0 to SW3 are biassed so that their
respective PORTA pins are normally at 0V
(low) but go high when pressed. In this
example program, at the label LOOP the
contents of PORTA are copied into W
(MOVF PORTA,W), which then holds the
status of all five usable bits of that port. We
are only interested, though, in the status of
the switch on PORTA bit 0, switch SW0.
Therefore, in the next command (ANDLW
B’00000001’) bit 0 is ANDed with 1 to
isolate its value, the other seven bits in W
being cleared by the respective zeros of the
ANDed value.

The answer in W is then added to the
contents of the counter (ADDWF
COUNT,F). Next, the contents of the
counter are brought back into W (MOVF
COUNT,W) and then copied into PORTB
(MOVWF PORTB), whose l.e.d.s are
turned on or off depending on the binary

count value. With the command GOTO
LOOP, the sequence is repeated.

It will be seen that there is only an
increase in the count value if PORTA bit 0
holds a 1, therefore the count will only
change if the switch is on (pressed).
Pressing any other switch connected to
PORTA has no effect. When the counter
passes 255, its value rolls over to zero and
starts counting upwards again.

���
�
����
7.1. Can you see another way of writing

the first two lines using MOVLW and
ANDWF?

7.2. Can you see how the BTFSS or
BTFSC commands might be used to
achieve the same output result; the use of
MOVLW 1 or ADDLW 1 could be useful
here.

7.3. There is also the opportunity to use
INCF in this type of situation. Try rewrit-
ing to include this command.

����

����
CONCEPTS EXAMINED

Increasing speed of TK3TUT8
Bit testing for switch status

CONNECTIONS NEEDED
All Port B to all l.e.d.s.
Port A RA0-RA3 to switches SW0-SW3

(via CP19-CP16)
CP21 to +5V OUT
CP20 to 0V OUT
Capacitor C7 as 1�F
Preset VR1 set to minimum resistance

(fully clockwise)

In TK3TUT8 we saw that the count
adding commands etc. were performed
even if the count value was zero. This is a
waste of processing speed, why bother to
add zero to a count? The program in
Listing 9 shows a faster alternative. Run
TK3TUT9.HEX.

By using the command BTFSS to check
the status of a switch (in this case still SW0
on PORTA bit 0), if the switch is not
pressed we can avoid the count increment-
ing procedure, jumping immediately to a
further switch status test. Alternatively, in
another program, by substituting another
destination instead of LOOP, we could
jump to a totally different routine and per-
form some other procedure.

Another choice is to use the command
RETURN instead of GOTO LOOP to
return to another routine which had called
this one. Commands CALL and RETURN
will be covered in Tutorial 13.

It is expected that you will recognise
from Listing 9 what the program does and
how it does it. If you don’t, re-read Tutorial
4 and the section on BTFSS.

���
�
����
8.1. What happens if you use BTFSC

instead of BTFSS?

8.2. Could one of the Zero flag testing
commands be used instead of BTFSS? If
so, how, and would an AND command be
useful? (Remember that PORTA has more
bits than just bit 0).

����

����
CONCEPT EXAMINED

Responding to a switch press only at the
moment of pressing

CONNECTIONS NEEDED
All Port B to all l.e.d.s.
Port A RA0-RA3 to switches SW0-SW3

(via CP19-CP16)
CP21 to +5V OUT
CP20 to 0V OUT
Capacitor C7 as 1�F
Preset VR1 set to minimum resistance

(fully clockwise)

In the switch press examples of
Listings 8 and 9, we saw that the counter
was incremented for the entire duration
of the switch being on. Often, only a sin-
gle response to a change of switch status
might be required. This entails testing
the switch status and comparing it with a
previous test. Only if the switch is on and
if that on condition has not yet been
responded to will the next action be
performed.

Load TK3TUT10.HEX. You are still
monitoring PORTA bit 0 for the switch
press (SW0), responding to it via the l.e.d.s
on PORTB. Observe the l.e.d.s while press-
ing SW0 on and off. For each pressing,
only one change of the l.e.d. count will
occur (but note that low-cost switches may
cause switch-bounce, resulting in the count
increasing for each bounce – a matter cov-
ered later).

Study Listing 10: the entry to the routine
is at BEGIN where two variables, COUNT
and SWITCH are cleared. At the label
TESTIT, the command is BTFSC
PORTA,0, testing the status of PORTA bit
0 (is it clear?). Remember that we are only
interested in the bit being set. If it is false
that bit 0 is clear (i.e. that it is set – the
switch is pressed) the command GOTO
TSTPRV is performed and then the status
of SWITCH bit 0 is tested, BTFSC
SWITCH,0. This bit serves as the flag to
keep track of the previous status of the
switch. At this moment, the bit will be
clear because the whole byte was cleared
on entry to the routine. Consequently, the
GOTO TESTIT command is skipped, the
count is incremented and its value output to
PORTB.

18 – PIC Tutorial V2 Supplement Everyday Practical Electronics, May 2003

�
��
��������
��
��
�	�����
LOOP BTFSS PORTA,0

GOTO LOOP
INCF COUNT,F
MOVF COUNT,W
MOVWF PORTB
GOTO LOOP

�
��
�������
�
��
����	������
BEGIN CLRF COUNT

CLRF SWITCH
TESTIT BTFSC PORTA,0

GOTO TSTPRV
BCF SWITCH,0
GOTO TESTIT

TSTPRV BTFSC SWITCH,0
GOTO TESTIT
INCF COUNT,F
MOVF COUNT,W
MOVWF PORTB
BSF SWITCH,0
GOTO TESTIT

Now SWITCH bit 0 is set (BSF
SWITCH,0) to indicate that the count has
been incremented for this switch press (i.e.
the flag is set), and the program jumps
back to TESTIT. If the switch is still
pressed, then at TSTPRV the BTFSC
SWITCH,0 command will produce a false
answer and the command GOTO TESTIT
will be performed, thus preventing the
counter from being further incremented at
this time.

What is now needed is for the switch to
be released so that the two commands BCF
SWITCH,0 (clear the flag) and GOTO
TESTIT can occur. The stage is then once
again set for the next switch press to be
responded to by the counter.

���
�
����
9.1. In Listing 10, AND and MOV com-

mands could have been used instead of
BTFSC and BCF. How, and with what
other command?

9.2. Would using BTFSS instead of
BTFSC involve more commands and
labels having to be used as well?

9.3. Because low cost switches have
probably been used, there is the danger that
mechanical switch bounce might occur,
causing the count to be incremented unde-
sirably. Another counter could be used to
cause a delay in the rate of switch testing to
eliminate the effects of switch bounce.
How would you implement the delay, and
where would you put the commands
required. Hint, another label will be need-
ed as well.

����

�����
CONCEPTS EXAMINED

Performing different functions depend-
ing upon which of two switches is
pressed

The use of a common sub-routine serv-
ing two other routines

CONNECTIONS NEEDED
All Port B to all l.e.d.s.
Port A RA0-RA3 to switches SW0-SW3

(via CP19-CP16)
CP21 to +5V OUT
CP20 to 0V OUT
Capacitor C7 as 1�F
Preset VR1 set to minimum resistance

(fully clockwise)

Run TK3TUT11.HEX and experiment
with the switches on PORTA bits 0 and 2
(SW0 and SW2). You will discover that
switch SW0 causes the count displayed on
the l.e.d.s to be increased, and that switch
SW2 decreases the count. The basic logic
flow is the same as that in Listing 10,
except that two switches are used and each
switch is responsible for a different
routine.

Note that whilst each switch could have
had its own routine to output to PORTB,
the two routines would be the same.
Consequently, each switch routine is rout-
ed into a common output sub-routine
(OUTPUT). At the end of SW0’s routine,
the command GOTO OUTPUT needs to be
given, but at the end of SW2’s routine, no
GOTO OUTPUT command is needed
because OUTPUT follows immediately
after it. It is said to reach OUTPUT by
default because it does not need to be told
to go there.

���
�
�����
10.1. How do you think a single test for

neither of the switches being pressed could
be introduced, shortening the testing time?
Could an AND be used with a STATUS
check, or can a STATUS check be used on
its own without an AND? (Think carefully
about the latter.)

10.2. How would you increase the count
by more than one, say two, at each press of
switch SW0? With the knowledge you’ve
gained so far, three ways should come to
mind, one of them including the use of a
new named variable.

10.3. If you want to add 255 each time a
switch SW0 press occurs, do you need an
ADD command, or is there another com-
mand which will do the same job? (Think
rollover.)

����

�����
CONCEPTS EXAMINED

The ease of reflecting PORTA’s switches
on PORTB’s l.e.d.s!

Command COMF
Command SWAPF
Inverting a byte’s bit logic
Swapping a byte’s nibbles

CONNECTIONS NEEDED
All Port B to all l.e.d.s.
Port A RA0-RA3 to switches SW0-SW3

(via CP19-CP16)
CP21 to +5V OUT
CP20 to 0V OUT
Capacitor C7 as 1�F
Preset VR1 set to minimum resistance

(fully clockwise)

Load TUT12.HEX. Experiment with
pressing any combination of the four

switches on PORTA (SW0 to SW3) while
observing the l.e.d.s on PORTB. This rou-
tine should need no further comment.
Another way of expressing the first two
commands is:

LOOP MOVLW B’00001111’
ANDWF PORTA,W

Now load TUT13.HEX and run it, again
experimenting with pressing any combina-
tion of the switches on PORTA (SW0 to
SW3) and observing the l.e.d.s on PORTB.

You will see while you press PORTA’s
four switches, that they are having their
status displayed on PORTB’s four lefthand
l.e.d.s (LD7 to LD4), even though you have
not changed the wiring to PORTB and the
l.e.d.s. Had there been a fifth switch, on
PORTA RA4, it would be affecting the first
l.e.d. on the right (LD0) – if a different
AND value were used (what value?).

What is happening is that the software
has been told to swap and move into W
(SWAPF PORTA,W) the left and righthand
four bits of PORTA (its nibbles, as intro-
duced in Tutorial 7). The answer is then
ANDed with bits that reflect the swapped
status in order to remove any possibility of
influence by the unused bits of PORTA’s
register.

The SWAPF command is especially use-
ful if the values of the two nibbles are
required separately as values of up to 15
(00001111). A good example of its use will
be seen in Tutorial 21. It is illustrated now
because of its programming similarity to
TK3TUT12 and TK3TUT14.

The F suffix can be used with SWAPF
instead of W, as with other files discussed.
There is no command which allows nibbles
to be swapped once the byte is in W. If a
byte within W needs swapping, it must be
put out to a file, and then the SWAPF
(FILENAME),W command given to bring
it back into W.

Let’s look now at another command
which uses a similar demonstration routine
to TK3TUT12 and TK3TUT13. Run
TK3TUT14.HEX. Once more, experiment
with pressing any combination of switches
SW0 to SW3 while watching PORTB’s
l.e.d.s.

You will now discover that instead of
l.e.d.s being turned on when a switch is
pressed, they are turned off, and vice versa.
This is due to the command COMF, which
automatically inverts each bit of a byte, 1s
becoming 0s, 0s becoming 1s, i.e. it per-
forms a task known as complementing,
hence COMF, which means COMplement
File.

�
��
�������
�
��
����	������
BEGIN CLRF COUNT

CLRF SWITCH
TEST1 BTFSC PORTA,0

GOTO TSTPR1
BCF SWITCH,0
GOTO TEST2

TSTPR1 BTFSC SWITCH,0
GOTO TEST2
BSF SWITCH,0
INCF COUNT,F
GOTO OUTPUT

TEST2 BTFSC PORTA,2
GOTO TSTPR2
BCF SWITCH,2
GOTO TEST1

TSTPR2 BTFSC SWITCH,2
GOTO TEST1
BSF SWITCH,2
DECF COUNT,F

OUTPUT MOVF COUNT,W
MOVWF PORTB
GOTO TEST1

�
��
�������
�
��
����	������
LOOP MOVF PORTA,W

ANDLW B’00001111’
MOVWF PORTB
GOTO LOOP

�
��
�������
�
��
����	������
LOOP SWAPF PORTA,W

ANDLW B’11110000’
MOVWF PORTB

�
��
���� ��
�
��
����	�����
LOOP COMF PORTA,W

ANDLW B’00001111’
MOVWF PORTB
GOTO LOOP

Everyday Practical Electronics, May 2003 PIC Tutorial V2 Supplement – 19

There are several uses for this command,
one of which is the situation when all the
switches are biased to the +5V line instead
of 0V. In that instance, and using the switch
testing techniques shown earlier, pressing
the switches would produce the wrong bit
levels for the commands shown: switches
would need to be held pressed for off,
releasing them for on. Not an easy thing to
do with push-switches!

Swap over the 0V and +5V connections
to pins CP21 and CP20 so that PORTA
pins RA0 to RA3 are biassed to +VE,
going low when switches SW0 to SW3
are pressed. Run the program again. You
will find that the l.e.d.s respond as they
did for TK3TUT12. Now run TK3TUT12
again and confirm that the l.e.d. results
are the inverse of that previously seen
with it.

Another use for COMF is in subtraction.
This is a concept for experienced program-
mers and will not be demonstrated here. In
a nutshell, the use of COMF allows addi-
tion to be used instead of subtraction while
still achieving the desired objective. This
technique can be easier in some instances
than using the available subtraction
commands.

The F suffix can be used with COMF
instead of W, as with other files discussed.
There is no command which allows the
inversion of a byte once it is in W. If a byte
within W needs inversion, it must be put
out to a file, and then the COMF (FILE-
NAME),W command given to bring it back
into W.

���
�
�����
With these exercises, reconnect the +5V

connection to CP21 and 0V to CP20.
11.1 If SWAPF was not available as a

command, how would you write a routine
which produced the same result (would
RLF or RRF be suitable commands)?

11.2 Rewrite TK3TUT13 and
TK3TUT14, putting the contents of W out
to a file of any name (which you must
equate at the beginning of the program),
performing another COMF or SWAPF
action, and then bringing it back into W
for output to PORTB. Can PORTB be used
as the temporary file store in these
rewrites?

11.3. Write a routine that allows the nib-
bles of a byte to be put into separate files
and each having a value no greater than
H’0F’ (decimal 15); there are several ways
of doing it.

����

�����
CONCEPTS EXAMINED

Generating an output frequency in
response to a switch press

The use of two port bits set to different
input/output modes

Command NOP

CONNECTIONS NEEDED
All Port B to all l.e.d.s.
Port A RA0-RA3 to switches SW0-SW3

(via CP19-CP16)
Port A RA4 connected as in Fig.3 (audio

connection)
CP21 to +5V OUT
CP20 to 0V OUT
1�F capacitor C7 omitted (from hereon)
Preset VR1 set to minimum resistance

(fully clockwise)

So far we have been outputting data to
l.e.d.s, and at a comparatively slow rate.
We have also been using one port as a
switch input and the other port as the out-
put. Here we examine how the same port
can be used simultaneously for input and
output via different bits. In doing so, we
use sound as the medium by which we
indicate the status of a switch, generating
an audible frequency when it is pressed.

The 1�F capacitor used up till now for
C7 should be omitted from hereon.

Connect a 330� resistor between RA4
and the +5V connection at CP21. Pin RA4
is an open-collector pin and this resistor
biasses it so that an output can be generat-
ed on it. Connect a 1�F capacitor with its
positive lead on the junction of RA4 and
the resistor. Connect the negative lead of
the capacitor to the signal terminal of a
jack socket that suits your personal (high-
impedance) headphones (see Fig.3).

Do not connect a loudspeaker directly to
this circuit as there is insufficient power to
drive it.

Load TK3TUT15.HEX and press switch
SW0 on and off. A frequency tone will be
heard when the switch is pressed.

In the initialising statements at the head
of the full TK3TUT15.ASM program,
PORTA has been set with bits 0 to 3 as
inputs and bit 4 as an output (MOVLW
B’00001111’, MOVWF TRISA). You
should now recognise all the commands
given in the heart of the program shown.
Only a general commentary on what hap-
pens is now given.

On entry into the routine headed
SOUND, a value of 80 is loaded into the
files named NOTE and FREQ. The value is
arbitrary as far as this demonstration is
concerned. You may choose any other from
1 up to 255; the lower the value, the higher
the frequency generated.

PORTA’s status is monitored at
GETKEY and the setting (logic 1) of
PORTA bit 0 by switch SW0 is being
looked for. Switch testing is repeated
until SW0 is pressed, setting RA0 high.

When that occurs, file NOTE is decre-
mented and its zero status tested. If it is
not yet zero, the routine jumps back to the
switch test.

When the switch has been pressed for
long enough (mere thousandths of a sec-
ond), NOTE will eventually reach zero, at
which point the command MOVF
FREQ,W is reached, followed by the fixed
value of FREQ being reset into NOTE.
Next, the value in PORTA has 16 (binary
00010000) added to it to increment the
count at bit 4 (so alternating the bit
between 0 and 1), and then there is a jump
back to further switch testing.

For as long as switch SW0 is pressed,
PORTA bit 4 will be periodically incre-
mented. The speed at which the routine
runs causes this bit to change at the audio
frequency rate to which you are listening.
If you adjust the rate setting preset, VR1,
you will hear the change in the resulting
frequency.

In a real-life situation, of course, the
operating frequency of the system would
normally be fixed. One frequency correc-
tion choice then is to change the value of
FREQ.

There is, though, another factor that
will affect the resulting audio frequency:
the number of commands within the con-
trolling loops. To illustrate the point, let’s
change the number of commands
involved.

You may think that to add more com-
mands would be difficult, what would they
do which would not interfere in the com-
pletion of the loop? Well, there are several
options, such as repeating some of the
existing commands, MOVF FREQ,W for
example, or MOVWF NOTE. Neither of
these commands would actually change
anything, except for the rate of operation.
However, a tailor-made command is
already available in the PIC’s command
codes which is intended for use where
minor delay tactics are needed, command
NOP.

�����������
Command NOP simply stands for No

OPeration. Responding to this command
takes the PIC just as long as responding to
any other single-cycle command but its
response is to just do nothing!

This command, then, can be used here to
slow down the resulting note frequency.
Insert it immediately before DECFSZ
NOTE,F. When running the amended pro-
gram you will notice that a change in the
output frequency has occurred.

���
�
�����
12.1. Experiment with different values for

FREQ. What happens if you set FREQ to
zero – does it stop a note being generated?
Explain the result.

12.2. Experiment with more than one
NOP command in the loop.

12.3. At which other places can you
alternatively insert NOP, and is the fre-
quency change still noticeable?

12.4. Are there any places where you
cannot use NOP?

12.5. When the audio frequency is not
being generated there is the likelihood that
RA4 will be set low, so sinking current
through the 330� resistor. Can the pro-
gram be modified so that this cannot
occur.

�
��
����!��
�
��
����	�����!
SOUND MOVLW 80

MOVWF NOTE
MOVWF FREQ

GETKEY BTFSS PORTA,0
GOTO GETKEY
DECFSZ NOTE,F
GOTO GETKEY
MOVF FREQ,W
MOVWF NOTE
MOVLW B’00010000’
ADDWF PORTA,F
GOTO GETKEY

20 – PIC Tutorial V2 Supplement Everyday Practical Electronics, May 2003

3.5mm STEREO
JACK SOCKET

(SEE TEXT)

HEADPHONES

0V OUT

+5V OUT

TO RA4

1µ
330Ω

+

Fig.3. Audio output connections.

����

�����
CONCEPTS EXAMINED

Command CALL
Command RETURN
Command RETLW

CONNECTIONS NEEDED
All Port B to all l.e.d.s.
Port A RA0-RA3 to switches SW0-SW3

(via CP19-CP16)
CP21 to +5V OUT
CP20 to 0V OUT
Preset VR1 set to minimum resistance

(fully clockwise)

Before looking further into sound gener-
ation, there are several commands that we
should examine. Three of those are associ-
ated with calling sub-routines: CALL,
RETURN and RETLW.

Load TK3TUT16.HEX and experiment
with pressing different combinations of
switches SW0 to SW3 while observing
PORTB’s l.e.d.s.

�������������"

���
������
����

Programs can be written as a series of
sub-routines which can be reached in one
of three ways, directly by default (without
being told to go there), via a GOTO com-
mand, or by a CALL command. (Routing
following automatic detection of an inter-
rupt event is another matter and is dis-
cussed later.)

We have shown several examples of the
first two. Program TK3TUT4 (Tutorial 4)
uses them both: the sub-routine LOOP1 is
entered directly following the initialisation
routine. LOOP2 is also entered directly
from the end of LOOP1. Both LOOP1 and
LOOP2 are then further accessed by
GOTO commands.

However, a CALL command can be
used if one routine needs to make use of
another and then once that has been com-
pleted, for the program to jump back to
continue from the command that follows
the call. The use of sub-routines allows the
same routine to be accessed from many
other areas within the overall program, so
saving on program space.

A second command always has to be
used before the program returns to the call-
ing origin. That command takes one of two
forms, RETURN (which is an obvious
command – return to where you came
from) or RETLW (RETurn to where you
came from with a Literal value held in W).
There is a third return command, RETFIE,
which we shall meet later in connection
with interrupts.

A GOTO command can never be used to
end a sub-routine call – the PIC will con-
tinue to expect a return command and, if
repeated calls to a sub-routine are made
without a RETURN or RETLW command,
it will become confused and unpredictable

results could occur. For example, the fol-
lowing is “illegal”:

PROG1 CALL PROG2
GOTO PROG1

PROG2 GOTO PROG1

This is “legal”, though:

PROG1 CALL PROG2
GOTO PROG1

PROG2 RETURN

When the program returns from a CALL
following a RETURN command, the con-
tents of W are those which were put there
by the last command which used W.
Consequently, you can perform a complex
sub-routine, end up with an answer in W
and, using the RETURN command, return
to the main program with that result still
retained in W.

Command RETLW, though, returns to
the main program with W holding the
value which RETLW has acquired as part
of that command. A literal value is always
specified as part of the RETLW command,
e.g. RETLW 127 or RETLW 0. That value
replaces any other value within W and is
the one which is held in W on the return to
the calling point. The value may be
expressed in decimal, hexadecimal, binary
or as a “named” value equated during pro-
gram initialisation.

To explain Listing 16 then, at LOOP the
sub-routine at PROG1 is CALLed from
where the value held in PORTA is moved
into W. A return is made to the loop where
the next command to be performed is
MOVWF PORTB, after which the GOTO
LOOP command again takes us back to
CALL PROG1 again.

It is important to be aware that PICs
have a limit to the number of calls that can
be nested (calls being made from within
calls). This is due to the PIC’s Stack (the

area that monitors the return addresses
when calls are completed) being limited to
only eight address values. If the Stack
receives more than eight addresses it will
over-write the earlier ones, causing a pro-
gram crash.

There is no way to read or write to the
Stack or to determine how full it is. It is
therefore imperative that if you are using
nested calls then you must keep very care-
ful track of how many you are using. In
such cases consider whether you could
achieve the same result by using GOTO
commands for some of the calls, or by
returning to the previous calling routine
before making the next call.

Run program TK3TUT16 and confirm
that l.e.d.s LD0 to LD3 respond as expect-
ed to the pressing of the four switches.

���
�
�����
13.1. Rearrange TK3TUT16 so that

reading PORTA is in the main loop and
outputting data to PORTB is in the called
routine.

13.2. Try adding other commands in the
subroutine, such as AND or ADD.

13.3. Use RETLW as the final statement
in the subroutine, using any literal value of
your choice, verifying its operation!

����

����
CONCEPTS EXAMINED

Tables
Register PCL (again)
Register PCLATH

CONNECTIONS NEEDED
All Port B to all l.e.d.s.
Port A RA0-RA3 to switches SW0-SW3

(via CP19-CP16)
CP21 to +5V OUT
CP20 to 0V OUT
Preset VR1 set to minimum resistance

(fully clockwise)

Everyday Practical Electronics, May 2003 PIC Tutorial V2 Supplement – 21

�
��
����#��
�
��
����	�����#
LOOP CALL PROG1

MOVWF PORTB
GOTO LOOP

PROG1 MOVF PORTA,W
RETURN

�
��
���������
��
����	������
BANK0
GOTO LOOP

TABLE ANDLW B’00001111’ ; AND W with 15
ADDWF PCL,F ; ADD to PCL
RETLW 255 ; 0 11111111
RETLW 1 ; 1 00000001
RETLW ’5’ ; 2 00110101
RETLW 0 ; 3 00000000
RETLW 31 ; 4 00011111
RETLW 193 ; 5 11000001
GOTO OTHER ; 6 00100000
RETURN ; 7 00000111
RETLW B’10101010’ ; 8 10101010
RETLW H’C7’ ; 9 11000111
RETLW ’A’ ; 10 01000001
RETLW 65 ; 11 01000001
RETLW ’B’ ; 12 01000010
RETLW ’x’ ; 13 01111000
GOTO OTHER1 ; 14 10001110

; or 10011110
MOVF STORE,W ; 15 00000000
RETURN

LOOP MOVF PORTA,W
CALL TABLE
MOVWF PORTB
GOTO LOOP

OTHER RETLW STORE
OTHER1 MOVLW 128

ADDWF PORTA,W
RETURN

The use of look-up tables, whose tabu-
lated commands or values are determined
by a value set elsewhere in a program, is of
enormous benefit. Tables depend on the
use of the Program Counter (PCL – dis-
cussed in Tutorial 4) and the commands
CALL, RETLW, RETURN and GOTO.
They can be used with other calls within
them, but this usually requires making
additional commands prior to accessing the
table. When a table is accessed, the value
already held in W is added to PCL and
causes the program to jump forward by the
same number of program commands as are
in W. The command at the jump address is
then performed.

Load TK3TUT17.HEX, run it and
experiment by pushing switches SW0 to
SW3 in any combination while observing
the l.e.d.s. on PORTB. The l.e.d.s should
come on according to the binary value
shown in the comments column of Listing
17, i.e. all l.e.d.s will be on if no switch is
pressed.

In TK3TUT17, the instruction BANK0,
although individually stated in the extract
shown here, follows the initialisation in the
normal way. After initialisation, and before
any tables are encountered, the command
GOTO LOOP bypasses the table com-
mands. Failure to bypass them would cause
confusion to the PIC.

At the first command of LOOP, switch
data from PORTA is brought into W. The
CALL TABLE command then routes the
program to the first command within the
table, ANDLW B’00001111’ (decimal 15).

The AND command is essential here to
limit the possible value which can be added
to the Program Counter (PCL). Although
only the four switches SW0 to SW3 are in
use, in another situation another switch
might be connected to pin RA4, and so the
binary value at PORTA could be greater
than 15 (all five switches on = 11111 bina-
ry = 31 decimal) and we also know that the
number of “routing” commands within the
table is 16 (0 to 15). If the table were to be
given a value greater than 15, the additive
PCL address jump would cause the pro-
gram to jump beyond the boundary permit-
ted, with unpredictable results. The
ANDing could, alternatively, have been
done immediately prior to CALL TABLE.

��
��
����������
�������

There are circumstances when the AND
statement is not needed. For example, if it
is known that the value present in W on the
call can never be greater than five, AND
would not be needed and the table could be
limited to six jump options only (remem-
ber that 0 counts as a jump value).
However, if in doubt about the maximum
value that could be in W, always use a
value limiter of some sort (techniques other
than AND can be used).

This limiting is especially necessary
when a program is being developed since
errors in other regions of the program
could result in an excessive W value,
resulting in a system “crash”. When
consequential crashes of this type occur, it
can be difficult sometimes to establish the
primary cause of the problem which is
elsewhere.

At the command ADDWF PCL,F the
ANDed value remaining in W is added to
the Program Counter and the command

within the table which corresponds to the
new address is performed. For clarity, W’s
entry value is shown alongside each of the
16 table jumps.

If the W value is 0, then the command
performed within the table is the first one
(0), RETLW 255. As instructed, the pro-
gram now returns to the calling point with
255 in W. If the value added to PCL is 5,
the command performed is RETLW 193.
In all instances of the RETLW command
within the table, the stated literal value is
copied into W and the return is made. You
will see that, as with other xxxLW com-
mands, the literal value can be expressed in
decimal, hexadecimal, binary or equated
name values.

What you have not encountered yet is
the use of characters in single quotes. Any
standard ASCII character from the full 0 to
255 set can be entered in this way, num-
bers, upper or lower case letters, symbols,
etc.

During assembly, any character within
the quotes is translated into its ASCII value
and it is that value which is returned in W.
(In reality, a lot of the ASCII codes will not
be available on your keyboard.) Note that
only the “apostrophe” type of quote is per-
mitted (’), that normally residing on your
keyboard between the semicolon (;) and
the hash symbol (#). The double-quote
symbol (”) is not permitted, nor is the “left-
hand” single quote (`) found on many key-
boards (to the left of numeral 1 and the
exclamation mark).

Four examples of “quoted” characters
are shown in the table. Quoted ’5’ will be
translated as ASCII 53 (not as the value 5);
’A’ and ’B’ will become ASCII 65 and 66
respectively; lower case ’x’ will be
returned as ASCII 120. You will find this
conversion technique invaluable when
compiling tables of messages for output to
an alphanumeric l.c.d. (Tutorial 22).

The simple command RETURN at jump
7 will cause the current value already with-
in W to be returned; i.e. the value on the
switches after it has been ANDed with 15.
It may not be immediately clear what this
action would achieve, but an example is
given in Tutorial 15.

�����������
There are two examples of a tabled

GOTO command in Listing 17, at jumps 6
and 14. These cause the program to jump
to the sub-routines named, OTHER and
OTHER1. At OTHER, the command
MOVLW STORE is executed, after which
the program returns to the calling program
(not back into the table) with the equated
address value of STORE (see full ASM
listing).

The routine at OTHER1 shows how a
table jump can go to a routine in which
more than one action can be performed, in
this case adding 128 to the value at
PORTA, then returning as usual. Any
action can be performed here, on any file,
for any purpose, and there is no limit to the
number of commands performed before
the final RETURN (within the program
space available, of course).

The command at table jump 15 is inter-
esting. It looks as though a command other
than GOTO, RETURN or RETLW is being
performed. However, this jump is the last
in the table and so it is perfectly legitimate
to perform any other action(s) here since

the program will automatically follow
them through without interfering with the
normal table action.

Here the simple action of getting the
value held in STORE is performed, imme-
diately followed by a RETURN. Note that
the value returned from jump 15 may not
necessarily be zero as shown, since
STORE has not been given any value when
the program is initialised and so could take
any random value between 0 and 255.

What would cause table difficulties is if
the command at a mid-table jump did not
allow an immediate exit from the table. For
example, consider the following mid-table
jump commands:

RETLW 0 ; 3
MOVF STORE,W ; 4
RETLW 193 ; 5

Jump 3 would be OK, so would jump 5.
Jump 4, though, would perform MOVF
STORE,W (bringing the value within
STORE into W), but the exit route for that
command is via the address of jump 5,
which is RETLW 193, immediately replac-
ing the value acquired in jump 4 with the
value 193. Not very helpful!

Mind you, the commands GOTO or
RETURN could be at jump 5, which would
be fine for jump 4, but what of the result of
actually jumping to jump 5, would you nec-
essarily want to just RETURN or GOTO?

One could, perhaps, envisage a table
consisting only of INCF STORE,F com-
mands, for example, in which the number
of increments generated would be the
equivalent of the entry point value of W.
But the use of a loop or an addition would,
though, probably be more appropriate to
that requirement.

It is legitimate to GOTO a table, or arrive
at it from the end of another routine, but in
this case it may be necessary to only exit
the table by GOTO commands. Unless you
are already in the middle of a call, “return”
commands will cause a program crash.

Advanced use of Tabled GOTOs is dis-
cussed by Malcolm Wiles in his feature
PIC Macros and Computed GOTOs of
EPE Jan ’03 – this is on the PIC Resources
CD-ROM.

����������
There is a significant restriction on

tables which must not be overlooked.
Because of the way in which the Program
Counter handles the calls to and from
tables, all of the tabulated data must be
contained within the first 256 addresses of
the program (0 to 255). Not a single jump
address must fall outside this block (except
as discussed in a moment).

When writing software, it can sometimes
be difficult, depending on program struc-
ture, to ascertain from the code editing pro-
gram (word-processing software) whether
or not the tables overlap beyond the block.
If this is the case, come out of the WP pack-
age and assemble the code. Don’t send it to
the PIC, but come back into the WP and
examine the .LST file that has been gener-
ated for the program as it now stands. Look
at the address numbers (in the third column
as you saw earlier in Listing 3A) and see if
any part of the table(s) occurs beyond the
H’00FF’ hex address (decimal 255). Any
overlap beyond (even H’0100’ – 256 deci-
mal) is unacceptable.

22 – PIC Tutorial V2 Supplement Everyday Practical Electronics, May 2003

������
Advanced programmers do have a way

round the table block limit should they need
to find one. It is through the use of the
PCLATH register which allows additional
256 byte blocks to be used elsewhere in the
program. This command will, of course, be
useful if the total number of tabulated items
is greater than 256. Being an advanced pro-
grammer’s command, we shall not illustrate
PCLATH here. Interested readers are
referred to John Waller’s Using the PIC’s
PCLATH Command in EPE July ’02 –
again it is on the PIC Resources CD-ROM.

With both the “normal” and PCLATH
modified table areas there is no limit to the
number of tables within them, and the call-
ing routines can be anywhere within the
program, start, middle or end. It is perfect-
ly legitimate to have sub-routines placed
between different tables, but remember
that their length also consumes part of the
256 byte block.

���
�
����
14.1. Write a routine that calls a table

which multiplies a binary number by
seven. Use the switches as the source of
that number (pressing more than one
switch as necessary) and restrict it to

between 0 and 7, showing the results on
PORTB’s l.e.d.s.

14.2. Create a table to convert the binary
numbers generated by the switches (multi-
ple pressing again) to a BCD (binary coded
decimal) format; tens of units in the left
four l.e.d.s, units in right four l.e.d.s. (If
you are not familiar with BCD, think about
what it might mean and how it might be
shown on l.e.d.s. The use of BCD formats
is discussed in Tutorial 19.)

����

����!
CONCEPTS EXAMINED

Using four switches to create four differ-
ent notes

Use of a table to selectively route pro-
gram flow

CONNECTIONS NEEDED
All Port B to all l.e.d.s.
Port A RA0-RA3 to switches SW0-SW3

(via CP19-CP16)
Port A RA4 connected as in Fig.3 (audio

connection)
CP21 to +5V OUT
CP20 to 0V OUT
Preset VR1 set to minimum resistance

(fully clockwise)

The program in Listing 18 allows any
one of four notes to played by the switches
on PORTA RA0 to RA3 (SW0 to SW3). As
with Tutorial 12, the audio output is on
RA4. Reconnect your audio monitor, load
TK3TUT18.HEX and press some switch-
es. You will immediately notice that the
“note” frequencies belong to no musical
scale known to man. There is nothing we
propose to do about that, we are interested
in more mundane matters!

The object of this program is to show the
use of a table and several sub-routines
which allow four notes to be played
(singly) depending on the switch presses.
Multiple pressing of switches is ignored.

To conserve page space only one note
routine is shown. The others are identical
except that they process different notes and
PLAY4 omits the GOTO OUTPUT com-
mand since OUTPUT immediately follows
its final command. You will see the now-
familiar commands in the GETKEY and
PLAY1 routines. The table should seem
recognisable as well.

As in Listing 17, when the program first
starts, the table is bypassed and the first
main command is at PRESET. Here the
frequency values for the four notes are set
up as NOTE and FREQ variables.

Switches are monitored as before and
calls made to the table. There, routing to
different notes occurs only if individual
switches are pressed (jumps 1, 2, 4, 8). Any
other switch setting, including none,
results in a return to the calling point.

When the selected note routine has been
processed, a jump to OUTPUT occurs
from where the output pin RA4 is toggled,
causing a note to be heard. A RETURN
command follows, returning the program
to the calling point.

Even from this cut-down version of the
program, it is apparent that a lot of com-
mands are involved and that many of them
are similar (PRESET) or even identical
(PLAY by four).

You will also see that only five calls to
the table achieve useful results. The others

are wasted but have to be included because
four switches can generate 16 permutations
of settings. You can’t just say to the musi-
cian “never press more than one key at
once”, you have to allow for human falli-
bility. If an error can be made by the pro-
gram user, it will at some time be made –
Murphy’s Law. Programmers must always
think about what might happen and write
the software accordingly (making it “user-
friendly” is another way of putting it!).

The programmer must usually also think
about program speed and program com-
pactness. Sometimes they can both achieve
the same result, but not always. However,
for the sake of discussing program options
available, in a moment we’ll look at how
TK3TUT18.ASM could be written in
another way. First an exercise for you:

���
�
����!
15.1. Try to change the frequency values

in TK3TUT18.ASM to produce notes that
are somewhat more harmonically related!
What problems do you come up against?

����

����#
CONCEPTS EXAMINED

Indirect addressing
Using unnamed file locations
Register FSR
Register INDF

�
��
�������
�
��
����	������
TABLE ANDLW B’00001111’

ADDWF PCL,F
RETURN ; 0
GOTO PLAY1 ; 1
GOTO PLAY2 ; 2
RETURN ; 3
GOTO PLAY3 ; 4
RETURN ; 5
RETURN ; 6
RETURN ; 7
GOTO PLAY4 ; 8
RETURN ; 9
RETURN ; 10
RETURN ; 11
RETURN ; 12
RETURN ; 13
RETURN ; 14
RETURN ; 15

PRESET MOVLW 80
MOVWF NOTE1
MOVWF FREQ1
MOVLW 110
MOVWF NOTE2
MOVWF FREQ2
MOVLW 140
MOVWF NOTE3
MOVWF FREQ3
MOVLW 160
MOVWF NOTE4
MOVWF FREQ4

GETKEY MOVF PORTA,W
CALL TABLE
GOTO GETKEY

PLAY1 DECFSZ NOTE1,F
RETURN
MOVF FREQ1,W
MOVWF NOTE1
GOTO OUTPUT

(PLAY2 to PLAY4 are similar to
PLAY1)
OUTPUT MOVLW B’00010000’

ADDWF PORTA,F
RETURN

�
��
�������
�
��
����	������
TABLE ANDLW B’00000011’

ADDWF PCL,F
RETLW 10
RETLW 20
RETLW 40
RETLW 80

SETUP MOVLW 4
MOVWF LOOPA
CLRF COUNT
MOVLW NOTE1
MOVWF FSR

SETUP1 MOVF COUNT,W
CALL TABLE
MOVWF INDF
INCF FSR,F
INCF COUNT,F
DECFSZ LOOPA,F
GOTO SETUP1

GETKEY MOVF PORTA,W
ANDLW B’00001111’
MOVWF STORE
MOVLW 4
MOVWF LOOPA

ROTATE BTFSC STORE,3
GOTO PLAY
BCF STATUS,C
RLF STORE,F
DECFSZ LOOPA,F
GOTO ROTATE
GOTO GETKEY

PLAY DECF LOOPA,W
ADDLW NOTE1
MOVWF FSR
DECFSZ INDF,F
GOTO GETKEY
DECF LOOPA,W
CALL TABLE
MOVWF INDF

OUTPUT MOVLW B’00010000’
ADDWF PORTA,F
GOTO GETKEY

Everyday Practical Electronics, May 2003 PIC Tutorial V2 Supplement – 23

CONNECTIONS NEEDED
All Port B to all l.e.d.s.
Port A RA0-RA3 to switches SW0-

SW3 (via CP19-CP16)
Port A RA4 connected as in Fig.3 (audio

connection)
CP21 to +5V OUT
CP20 to 0V OUT
Preset VR1 set to minimum resistance

(fully clockwise)

Time now to examine a concept that
allows us to access generalised routines
which can manipulate file values without
actually specifying the file names within
them. This concept is called “Indirect
Addressing”. It also has profound implica-
tions for the ability to minimise the num-
ber of sub-routines required by a program.
Program TK3TUT19, which uses the
technique, will then be discussed and
demonstrated.

Indirect Addressing allows the use of
generalised routines which do not apply to
any specific files. The file which the rou-
tine accesses is specified prior to entry into
the routine and can be changed at will to
suit different aspects of the program.

�����������
����

���

The two key commands (or, rather, “file
registers”) in Indirect Addressing are FSR
(File Special Register) and INDF
(INDirect File). The idea of Indirect
Addressing is that you place the address of
the file that you wish to access in file FSR.
Commands to access the specified file
address are then made via file INDF.

Not only does this facility allow the
same routine to be applied to different call-
ing routines, it also allows a loop to access
a sequence of files without having to spec-
ify their individual addresses other than
that for one of them in the sequence.

In the following example, assume that
we have a sequence of files between
addresses H’20’ and H’2F’ (16 files). Let’s
call the first file FILE0. Its address will
have been equated at the head of the pro-
gram in the usual way. However, provided
we assume the next three addresses to be
reserved for 15 files which are consecutive
to FILE0, we do not have to give them
names unless we actually need to use the
names in the body of the program. Even
then the names could be anything we like;
they do not have to called FILE1, FILE2
etc., unless we wish to.

Suppose, for example, we wished to
clear all 16 of these files prior to another
routine and that we shall do it in ascend-
ing order using a loop. Prior to entering
the loop we get the address of the first
file, in this case FILE0, copy it into FSR
and reset the loop counter, let’s call it
LOOPA:

MOVLW FILE0
MOVWF FSR
CLRF LOOPA

Now all we need to do is use the follow-
ing simple routine:

RESET CLRF INDF,F
INCF FSR,F
INCF LOOPA,F
BTFSS LOOPA,4
GOTO RESET

Command CLRF INDF,F clears the file
whose address is held in FSR. Next, INCF
FSR,F increments the value held by FSR,
in other words FSR is incremented to point
to the next file we wish to clear (FILE0 in
the first instance of the loop, FILE1 in the
next). Next, we increment the loop counter,
INCF LOOPA,F, and test its bit 4 (BTFSS
LOOPA,4) to see if a count value of 16
(00010000) has been reached (remember
we started at 0). If the count is not yet 16,
the loop is repeated, GOTO RESET. If the
count equals 16, the next command after
GOTO RESET is performed, whatever that
might be in a full program. Another way of
doing it (and there are several ways) is:

MOVLW FILE0
MOVWF FSR
MOVLW 16
MOVWF LOOPA

RESET CLRF INDF,F
INCF FSR,F
DECFSZ LOOPA,F
GOTO RESET

You can also use similar constructions
to access a sequence of table values (from
anywhere within that table) and add them
to the values within a sequence of indirect-
ly addressed files, keeping the maximum
resulting addition to less than the maxi-
mum number of temporary registers that
the PIC provides.

In the following example (nothing
directly to do with TK3TUT19), the first
address required in the table is at jump 3.
This value is first placed into COUNT
(MOVLW 3, MOVWF COUNT). We want
to start adding the acquired table value to
the file starting six bytes beyond FILE0 so
the value of 6 is then added to the address
of FILE0 and the result placed into FSR
(MOVLW 6, ADDLW FILE0, MOVWF
FSR). We also want to perform the action
five times, once for each note, so a loop
(LOOPA) is set up with the initial value of
5 (MOVLW 5, MOVWF LOOPA).

The real action then starts at label GET-
VAL. The current value held in COUNT is
copied into W (MOVF COUNT,W). The
table is called (CALL TABLE) and value
held in the table at the location indicated
by the value in W is retrieved from the
table, being automatically placed into W.
The value from the table now in W is then
added to the value in the file held via INDF
and pointed to by FSR, and the result is
stored back into the same file (ADDWF
INDF,F). File FSR is now incremented
(INCF FSR,W), so incrementing the
address of the file held via INDF. Count is
incremented (INCF COUNT,F), and
LOOPA is decremented. If LOOPA is not
yet zero the process repeats.

MOVLW 3
MOVWF COUNT
MOVLW 6
ADDLW FILE0
MOVWF FSR
MOVLW 5
MOVWF LOOPA

GETVAL MOVF COUNT,W
CALL TABLE
ADDWF INDF,F
INCF FSR,F
INCF COUNT,F
DECFSZ LOOPA,F
GOTO GETVAL

��

���
���
���
��
�������
����

In the following worked example, part
of whose program is shown in Listing 19,
we demonstrate how Indirect Addressing
allows generalised file accessing routines
to be used, how a table can help in that
process, and how it helps code to be com-
pacted to achieve more actions within the
space available. Because only four switch-
es are available, the program is limited to
four notes, but if more switches were to be
added somehow, the process could readily
be extended to suit.

With your audio monitor still connected,
load TK3TUT19.HEX and play with the
four push-switches on PORTA (SW0 to
SW3). You will find that all four switches
produce “notes”, but not musically tuned,
though! The technique used is, in effect,
the same as that demonstrated in
TK3TUT18. There are, though, some
notable (no pun!) differences:

First, if you look at the full listing on
your disk, you will see that in the initiali-
sation, we have only equated NOTE1 and
there is no mention of FREQ1 etc. Yet, we
are actually using four files to behave as
NOTE1 to NOTE4 and we use a table
instead of FREQ1 to FREQ4.

What we have done (as discussed a
moment ago) is to consider a block of con-
secutive file addresses to be allocated to
NOTE1/NOTE4, starting at H’20’. To
remind us at some future time, there is a
comment alongside NOTE1 to this effect
in the full disk listing. The next address
which we specify cannot, therefore, occur
until the fifth byte later, at H’24’, where
LOOPA is equated. Any consecutive block
of four bytes could have been used.

As seen in the full program and the
extract in Listing 19, a table has four val-
ues in it and an AND command limits the
jump span from zero to three. The values
shown are the tuning values which will be
accessed periodically throughout the pro-
gram while it is running.

��

���
��
Routines SETUP and SETUP1 make

use of the indirect addressing facility to set
the initial (FREQ) values into the four
notes. Next comes routine GETKEY in
which the status of the four switches is
obtained in the usual way. There are 16
possible combinations of the switches and
we only want four of them, those for any
single switches being pressed.

We could, of course, not use a table but
simply test each bit of PORTA in turn and
use GOTO statements to obtain data about
which note should be played and which
note reset value is needed. Instead, though,
for the sake of demonstration, a different
technique is used, converting the 4-bit
PORTA value to a 2-bit value, covering
four possible combinations rather than 16.

PORTA’s value is ANDed with
B’00001111’ and copied into STORE, and
a loop set for a maximum of four opera-
tions. Up to four rotate left (RLF) actions
can then be called in routine ROTATE, and
the value of STORE bit 3 tested. Each bit
of STORE corresponds to a separate
switch, so the rotation allows all four
switches to be tested. If a 1 is found during
the rotation, the value of the loop

24 – PIC Tutorial V2 Supplement Everyday Practical Electronics, May 2003

corresponds to the switch in question and a
jump is made to the play routine. If a zero
is found, then no switches are pressed and
no note play action occurs.

In the PLAY routine, the loop value
(LOOPA) is decremented while being
moved into W (the loop value will be
between 4 and 1 but for program ease we
need a value between 3 and 0). The value
of W is added to the address of NOTE1 and
the answer is put into the indirect address
register FSR. The note now pointed to by
FSR is decremented via INDF and if the
result is not zero, a return to GETKEY is
made.

A zero result causes the value of
LOOPA to again be decremented into W
and then the table is called, returning with
the reset value for the note in use, which is
put into it via INDF. As we have seen
before, the output value at PORTA RA4 is
then incremented and a jump back to
GETKEY occurs.

Had this whole operation been pro-
grammed as separate routines for each
note, its length would have been consider-
ably greater, as in the previous example of
TK3TUT18; indirect addressing, bit rota-
tion and a table have changed that.
(Consider the length that would have been
required if we were using eight switches
for eight notes – a situation that would
have also brought up the problem of a
table that was greater than 256 com-
mands!) We shall use indirect addressing
again later.

���
�
����#
16.1. In Program TK3TUT19, priority

has been given to switches in descending
order (test bit 3). How would you rewrite to
give priority in ascending order?

16.2. If you wanted one of the switches
to be ignored, what extra command(s)
would be needed, and where? When con-
sidering where, think of the number of
times the situation has to be checked for
between each input of PORTA’s value,
remembering that each command pro-
cessed wastes valuable time.

16.3. Is the AND command at the head
of the table actually necessary?

16.4. As the program stands, there is one
extra file name used than needs to be;
which file could be used in two situations?

16.5. Also, with careful thought, parts of
the program could be slightly rewritten to
save at least seven commands. Can you
spot how this could be done? Question all
aspects, from initialisation downwards (see
also the full listing).

(Whilst the SETUP routine could be
heavily rewritten to save four of these
commands, in a real programming situa-
tion, unless you are short of program
space, it is better to concentrate on saving
commands in routines that are being called
frequently, so significantly increasing the
speed of operation. SETUP is only used
once, and so has no affect on the loop
speed.)

����

�����
CONCEPTS EXAMINED

Command XORLW
Command XORWF
Command IORLW
Command IORWF
Tone modulation

CONNECTIONS NEEDED
All Port B to all l.e.d.s.
Port A RA0-RA3 to switches SW0-SW3

(via CP19-CP16)
Port A RA4 connected as in Fig.3 (audio

connection)
CP21 to +5V OUT
CP20 to 0V OUT
Preset VR1 set to minimum resistance

(fully clockwise)

In a moment, we shall come down to a
somewhat simpler audio program, in which
we illustrate how two tones can be created,
one modulated, the other fixed. Both tones
could find use in, for example, a simple
intruder alarm. Also to be illustrated is how
the combined status of two or more switch-
es on a port can be tested using the XOR
(Exclusive-OR) command. This allows us
to take one action only if all the specified
switches are on simultaneously, otherwise
taking another action. First, let’s examine
the XOR command on its own.

����������

The command XOR checks for “equali-
ty” between two numbers. There are two
commands, XORLW (XOR Literal with
W) and XORWF (XOR W with value in
specified File). The latter is followed by
the file name, a comma, and the destination
(W or F), e.g. XORWF STORE,W and
XORWF STORE,F.

Probably you know that in electronics
there are XOR gates included in the digital
logic chip families, and you will no doubt
have read descriptions of truth tables relating
to just two inputs of an XOR gate (two bits):

0 XOR 0 = 0
0 XOR 1 = 1
1 XOR 0 = 1
1 XOR 1 = 0

As far as a PIC’s XOR function is con-
cerned, the result of XORing two bytes of
eight bits is the condition being checked. It
is easier here to show the principle by
means of switches and l.e.d.s rather than by
truth tables. To do this we should really use
eight switches on one port and eight l.e.d.s
on the other. However, since PORTA has
only four switches connected to it, we shall
just use a 4-bit number to illustrate the
principle, via four l.e.d.s on PORTB.

The basic program we shall use is shown
in Listing 20. Run program
TK3TUT20.HEX and play with PORTA’s
switches. You will find that when no
switches are pressed, PORTB l.e.d.s LD0
and LD2 are off, and LD1 and LD3 are on,
as are LD4 to LD7. When switch SW1 and
SW3 are pressed, they turn off their respec-
tive l.e.d.s (LD1 and LD3). Switches SW0
and SW2 turn on their l.e.d.s (LD0 and
LD2) when pressed.

In this listing, the value on PORTA is
input as usual. The next command

(ANDLW B’00001111’) is necessary to
this demonstration since we only want to
use the first four bits of PORTA. If PORTA
had eight bits that could be used, the AND
command would be omitted. The status of
each switch is being XORed with the
respective bit in the statement XORLW
B’11111010’; switch 0 with bit 0, switch 1
with bit 1, etc.

If any bit of PORTA is equal to that of
the same bit in the XOR command, the
same bit in the W register will be cleared.
Thus two zeros will produce a 0, and two
1s will produce a 0. If the bits are dissimi-
lar (1 and 0) the W bit is set (1). The reason
that the four lefthand l.e.d.s are on is that
bits 4 to 7 from the AND command and
bits 4 to 7 from the XOR command have
resulted in four non-equalities.

Suppose that the switches produce bina-
ry number 0111, the ANDed result in W is
00000111, the sequence of events is:

MOVF PORTA,W answer = xxxx0111
ANDLW B’00001111’ answer = 00000111
XORLW 11111010

answer = 11111101

Bits that are equal to their counterparts
have their corresponding l.e.d.s turned off,
those that are not equal have their l.e.d.s
turned on. Take another example:

MOVF PORTA,W answer = xxxx0010
ANDLW B’00001111’ answer = 00000010
XORLW 00000010

answer = 00000000

Here each bit is equal to its counterpart,
therefore all l.e.d.s are turned off, i.e. a
zero result has occurred and, importantly,
the Zero flag will have been set according-
ly. Therefore, we can check for equality by
checking the Zero flag following an XOR
command. Non-equality clears the flag,
equality sets it. Consequently, following an
XOR command you simply check
STATUS,Z and route accordingly.

Let’s use l.e.d. LD7 to illustrate this,
turning it on if equality exists, turning it off
if it doesn’t. Any bit between 0 and 3 which
is equal to the same XOR bit will have its
corresponding l.e.d. turned off, otherwise
its l.e.d. will be on. Load TK3TUT21.HEX
and press PORTA switches SW0 to SW3 to
observe this in action. Pressing SW3 and
SW1 together causes LB7 to come on. The
commands are shown in Listing 21.

��������
�

Although we shall not meet it until later

(Tutorial 21), it is opportune to mention
now that there is an “ordinary” OR com-
mand available. It is more correctly termed
“Inclusive-OR” (as opposed to Exclusive-
OR). It has two versions, IORLW

�
��
�������
�
��
����	������
GETKEY MOVF PORTA,W

ANDLW B’00001111’
XORLW B’11111010’
MOVWF PORTB
GOTO GETKEY

�
��
�������
�
��
����	������
GETKEY MOVF PORTA,W

ANDLW B’00001111’
XORLW B’00001010’
MOVWF PORTB
BTFSC STATUS,Z
BSF PORTB,7
GOTO GETKEY

Everyday Practical Electronics, May 2003 PIC Tutorial V2 Supplement – 25

(Inclusive OR Literal with W) and IORWF
(IOR W with value in specified File). The
latter is followed by the file name, a
comma, and the destination (W or F), e.g.
IORWF STORE,W and IORWF
STORE,F.

�������
��
The use of XOR in a practical situation

is illustrated in Listing 22. Temporarily
swap over the connections to CP20 and
CP21 so that RA0 to RA3 are biased nor-
mally high, going low when pressed.
Reconnect the audio output.

Load TK3TUT22.HEX, press any
switches SW0 to SW3, but principally use
switches SW0 and SW1 since these are the
ones coded to be active.

Listening to the output from PORTA,
you will find that switch SW0 controls a
static tone and SW1 controls a modulated
(ramped) tone. As you will have heard, the
tone starts at a low pitch, ascends and then
jumps back low again, repeatedly. Adjust
VR1 until this fact is more obvious. All
other switches are ignored. Look at the
program’s listing.

As with earlier tone generation exam-
ples, a starting value is loaded into NOTE
and FREQ, then a modulation starting
value is loaded into MODLAT, and a delay
value into DELAY, after which the
GETKEY loop is entered. Here the switch
settings on PORTA are read and ANDed
with 00000011 to extract the status of
switches SW0 and SW1. The answer is
XORed with the same value to check for
equality. If neither switch is pressed, no
further action is required and the routine
jumps back to GETKEY.

We are looking for the situation in which
either of the two switches is pressed. We
could do it simply by bit testing (indeed, it
would be easier!), but part of the aim of
this demo is to show a use of XOR. When
either switch is pressed, NOTE is

decremented and checked for zero and
reset as appropriate, as before.

When zero is encountered, if switch
SW1 is pressed, the DELAY counter is
decremented, if it is zero, DELAY is then
reset to 64 (BSF DELAY,6), the value of
MODLAT is added to the NOTE reset value
and the value of MODLAT itself is then
decremented. When MODLAT reaches
zero, it is reset to 128 (BSF MODLAT,7).
The OUTPUT routine is common to both
switch routings.

Note how bit values of MODLAT and
DELAY are set to reset these counters to
their original values. This works because
both values are known to have reached
zero.

���
�
�����
17.1. Experiment with different settings

for FREQ, DELAY and MODLAT
17.2. How would you change the coding

to respond to two other switches instead,
e.g. SW2 and SW3?

17.3. How would you reverse the ramp
to create a rising tone rather than a falling
one?

17.4. The addition of a third switch
would allow tones to be switched for ris-
ing, falling or fixed. Can you write the pro-
gram for it?

17.5. Can you add another routine which
would create a triangular modulation pat-
tern (rising tone, followed by falling, fol-
lowed by rising, and so on)?

����

�����
CONCEPTS EXAMINED

OPTION register
INTCON register
TMR0 register
Command OPTION_REG
Command INTCON

Command TMR0
Use of internal timer

CONNECTIONS NEEDED
All Port B to all l.e.d.s.
Port A RA0-RA3 to switches SW0-SW3

(via CP19-CP16)
CP20 to +5V OUT
CP21 to 0V OUT
Preset VR1 set to maximum resistance

(fully anti-clockwise)

The PIC16F84 has one special register
reserved for use as an 8-bit timer, TMR0
(Timer 0). It divides its input frequency by
256 and can be both written to and read
from. In most situations, though, it is
unlikely that you will need to use the
read/write facility, but note that if TMR0 is
written to, the timer is inhibited from
counting for two clock cycles.

Probably more useful than writing to
TMR0 is to use its output as it occurs nat-
urally at the 1:256 division rate, and then to
use the prescaler to subdivide that rate as
required. The prescaler divides its input
pulses by presettable powers of two. There
are eight possible division ratios which are
set via bits 0, 1 and 2 of the OPTION reg-
ister. When used with TMR0, the prescaler
division ratios are 1:2, 1:4, 1:8, 1:16, 1:32,
1:64, 1:128 and 1:256.

The prescaler can alternatively be allo-
cated for use with the Watchdog Timer
(WDT), in which mode each of these ratios
is halved (minimum is thus 1:1 and maxi-
mum is 1:128) – more on this later.

���
������
��
Note that the OPTION register should

not be equated as such since Microchip
previously had a command actually named
OPTION and use of this term in an ASM
file assembled by MPASM causes an error
condition. Consequently it is preferable
that the register should be equated as
OPTION_REG (Microchip’s equated term
in their INC files). You may still sometimes
come across the equated name OPTION, or
even OPSHUN instead.

(It should also be noted that bit 7 of the
OPTION register controls the PIC’s Light-
pullups facility and should be set high to
turn it off, as in Listing 23 – this facility is
discussed separately later.)

We commented earlier that the PIC
effectively runs at one quarter of the input
clock frequency at pin 16
(OSC1/CLKIN). When TMR0 is used as
an internal timer, the pulses it counts also
occur at one quarter of the clock frequen-
cy. So, if the clock frequency (set by a
crystal oscillator, perhaps) is running at
3·2768MHz, TMR0 will count at
819200Hz and its 1:256 roll-over rate will
be 3200Hz. This rate is then divided by
the ratio set into the prescaler. If we
divide by 32, for example, we obtain the
convenient rate of 100Hz.

In TMR0 mode, when the prescaler
rolls-over to zero, a flag is set in the
INTCON register, at bit 2. The setting of
this bit can be used as an interrupt (see
Part 3) which automatically routes the pro-
gram to another specified routine, irre-
spective of which routine is currently
being processed, returning to the same
point after the interrupt procedure has
been finished. The interrupt can also be
turned off and INTCON bit 2 read by the

�
��
�������
�
��
����	������
ENTRY MOVLW 80

MOVWF NOTE
MOVWF FREQ
MOVLW 128
MOVWF MODLAT
MOVLW 64
MOVWF DELAY

GETKEY MOVF PORTA,W
ANDLW B’00000011’
XORLW B’00000011’
BTFSC STATUS,Z
GOTO GETKEY
DECFSZ NOTE,F
GOTO GETKEY
MOVF FREQ,W
BTFSC PORTA,1
GOTO OUTPUT
DECFSZ DELAY,F
GOTO GK2
BSF DELAY,6
DECFSZ MODLAT,F
GOTO GK2
BSF MODLAT,7

GK2 ADDWF MODLAT,W
OUTPUT MOVWF NOTE

MOVLW B’00010000’
ADDWF PORTA,F
GOTO GETKEY

�
��
�������
�
��
����	������

CLRF PORTA
CLRF PORTB
BANK1
CLRF TRISA
CLRF TRISB
MOVLW B’10000000’
MOVWF OPTION_REG
BANK0
CLRF RATE
MOVLW 8
MOVWF COUNT
BCF INTCON,2

MAIN BTFSS INTCON,2
GOTO MAIN
BCF INTCON,2
MOVLW B’00010000’
ADDWF PORTB,F
BTFSS STATUS,C
GOTO MAIN
DECFSZ COUNT,F
GOTO MAIN
BSF COUNT,3
INCF RATE,W
ANDLW 7
MOVWF RATE
MOVWF PORTB
BANK1
IORLW B’10000000’
MOVWF OPTION_REG
BANK0
GOTO MAIN

26 – PIC Tutorial V2 Supplement Everyday Practical Electronics, May 2003

program to establish its status, taking
action accordingly.

�
��
����$�
%
�
��
Using the timer and the prescaler, you

can specify that some actions will only be
performed at specified sub-divided values
of the clock frequency. Amongst other
things, this allows the PIC to be used as a
real-time clock, a function towards which
we now progress.

First, let’s illustrate the effect of setting
different prescaler ratios and, using the
l.e.d.s on PORTB, show what happens.
Load TK3TUT23.HEX and run it. Set VR1
to full anti-clockwise rotation (slowest
rate). In this program we read the status of
INTCON bit 2 rather than using the inter-
rupt facility (discussed in Tutorial 27).

Initially, you will see a fairly fast binary
count occurring on PORTB’s l.e.d.s LD3 to
LD7. It is created with the timer “in-cir-
cuit” with the prescaler set for a minimum
division ratio of 1:2. This is because
OPTION_REG bits 0 to 2 are set to 000, a
value which is shown on LD0, LD1 and
LD2 – all off initially.

This rate of counting continues for eight
cycles of 32 increments (incrementing
PORTB’s count in steps of eight). The ratio
is then set at 1:4 (prescaler value 001), and
again another eight cycles occur. Similarly,
the other ratios are set. The difference in
the resulting l.e.d. count rates will be
obvious.

Adjust the setting of preset VR1 if the
slowness becomes tedious in later ratios.
After the eight ratios, the whole cycle
restarts from 1:2.

Looking at Listing 23, you will see that
the TMR0 rate is set into the
OPTION_REG register while in BANK1
mode, along with the port direction
registers.

���
�
�����
18.1. Study TK3TUT23.ASM, note the

comments and see if you understand what
is happening at each stage. Note the detec-
tion and resetting of the INTCON,2 flag
and the need to go via BANK1 when
changing the prescaler rate.

����

�����
CONCEPT EXAMINED

BCD (Binary Coded Decimal) counting

CONNECTIONS NEEDED
All Port B to all l.e.d.s.
Port A RA0-RA3 to switches SW0-SW3

(via CP19-CP16)
CP20 to +5V OUT
CP21 to 0V OUT
Preset VR1 set to maximum resistance

(fully anti-clockwise)

Having established the use of the timer,
we now work towards its use as the pulse
source for a real-time clock. There are a
few bridges to be crossed yet, though.
The first is counting in decimal rather
than binary, facilitating the eventual out-
put to a 7-segment l.e.d. or a liquid crys-
tal display. We could keep the counted
units in one byte, tens in another, hun-
dreds in another, and so on, but, to con-
serve precious byte space, it is equally
possible to use each byte as two 4-bit nib-
bles, keeping units in bits 0 to 3, and tens

in bits 4 to 7. Hundreds units and tens
would be treated similarly in a second
byte.

For simplicity now, we concentrate on
counting up to 99, first considering the use
of two bytes. In 8-bit binary, a value of dec-
imal 9 is expressed as 00001001, decimal
10 is 00001010, decimal 16 is 00010000. It
is obvious that with decimal values we
have no single symbol for a number greater
than nine. When a value one greater than
nine occurs, what we do is reset the units
digit to 0 and add one to the next digit, i.e.
ten is written as 10.

While counting in binary coded decimal
(BCD), we can do a similar thing. When
the byte holding the units reaches ten, we
reset that byte to zero and add one to the
next byte. In 8-bit BCD and at a count of
nine, the two bytes would read 00000000
(tens) and 00001001 (units). At the count
of ten, the bytes become 00000001 (tens)
and 00000000 (units).

When using two nibbles of an 8-bit byte
(instead of the above two bytes), a BCD
value of nine reads as 00001001, but a
BCD value of ten reads as 00010000. And,
for example, a BCD value of 37 reads as
00110111, i.e. the lefthand nibble (MSN –
Most Significant Nibble) holds a value of 3
and the righthand nibble (LSN – Least
Significant Nibble) holds 7. A value of 99
is expressed as 10011001. For a value of
100, both nibbles are reset to zero
(00000000) and if there is a byte for hun-
dreds and tens of hundreds, its righthand
nibble (LSN) would be incremented, and
so on.

Thus, when counting in BCD, we have
to check the four bits of the LSN on their
own and see if their value is greater than
nine. If it is, that nibble is reset and the
MSN incremented. The MSN is then taken
on its own as a 4-bit value and checked if it
is greater than nine. If so, this nibble is
reset and the LSN of the next byte incre-
mented accordingly.

����	
�����

�������%�����

There are (as in many programming
matters) several ways of checking the nib-
bles for excess values, of which we shall
describe one: an additive checking routine.
We said earlier (Tutorial 7) that there is a
Digit Carry (DC) flag which signals if the
binary value of the LSN has become
greater than 15 following an addition. We
can use this fact by adding a number to the
LSN which will make the answer greater

than 15 if the basic value of the LSN is
greater than 9.

The number to be added is 6, e.g. 10 + 6
= 16 with DC flag set; 9 + 6 = 15 with DC
flag clear. Therefore, to check if an LSN
value is greater than 9, we temporarily add
6 to it and check the DC flag. If the flag is
clear, the LSN is left as it is. If the flag is
set, we increment the MSN and clear the
LSN.

There is a short cut to doing this, taking
advantage of the fact that 10 + 6 = 16,
being 00010000 in binary. If you look at
this answer, the LSN is now zero, while the
MSN has been incremented automatically,
thus representing decimal 10 in BCD.
Thus, when we add 6 to the byte as a
whole, if the DC flag is clear, no further
action on that byte is needed (or on any
subsequent bytes for that matter). If,
though, the DC flag is set, we simply
replace the existing value in the byte with
the value now stored temporarily. These
commands do the job:

INCF COUNT,F ; increment file
value

MOVLW 6 ; move 6 into W
ADDWF COUNT,W ; add it to new file

value but keep
answer in W

BTFSC STATUS,DC ; is the Digit
Carry flag clear?

MOVWF COUNT ; no, it’s set so
move W into file,
replacing previ-
ous value

(next command)

The above check is done in respect of
LSN, but when the DC flag is set, the
resulting action changes the value of the
MSN, which then has to be checked to see
if it (as a 4-bit nibble) is greater than 9, i.e.
is the BCD value of the whole byte now
equal to or greater than decimal 100?

Again there is an easy additive tech-
nique. If we translate the binary value of
BCD 100 (10100000) the decimal answer
is 160. If we temporarily add 96 (256 –
160) to the whole byte, we can then check
the Carry flag (C) to see if it has been set,
which it will be if the binary answer has
rolled over beyond 255. As before, if the
flag is clear, the byte can remain as is; if
the flag is set, we replace the value with the
temporary one.

(Note that the DC and Carry flags are
unaffected by an INCF or INCFSZ
command.)

Here’s the extended routine. Note the
inverted logic for checking Digit Carry and
Carry flags, BTFSS STATUS,DC in
the first instance, BTFSC STATUS,C in the
second.

INCF COUNT,F
MOVLW 6
ADDWF COUNT,W
BTFSS STATUS,DC
GOTO ENDADD
MOVWF COUNT
MOVLW 96
ADDWF COUNT,W
BTFSC STATUS,C
MOVWF COUNT

ENDADD (program continues)

Let’s look at the BCD additive technique
in practice, triggering it from the timer

�
��
���� ��
�
��
����	�����
MAIN BTFSS INTCON,2

GOTO MAIN
BCF INTCON,2
INCF COUNT,F
MOVF COUNT,W
ADDLW 6
BTFSS STATUS,DC
GOTO OUTPUT
MOVWF COUNT
ADDLW 96
BTFSC STATUS,C
CLRF COUNT

OUTPUT MOVF COUNT,W
MOVWF PORTB
GOTO MAIN

Everyday Practical Electronics, May 2003 PIC Tutorial V2 Supplement – 27

routine. In Listing 24, note the use of
CLRF COUNT before OUTPUT at the
end. This can be used here since we know
that adding 1 to the count is occurring,
rather than adding values of 2 or greater. In
the latter instance, the resulting temporary
answer must be MOVed into COUNT, as in
the above examples.

Load TK3TUT24.HEX and observe the
count incrementing on the l.e.d.s. The
prescaler is now run at a fixed ratio of
1:128. Try adjusting VR1 so that an l.e.d.
count rate of one per second (1Hz) occurs.
(The tolerance of VR1 and the in-circuit
capacitance may not allow you to set the
rate quite this slow without also amending
the OPTION_REG timing value.)

���
�
�����
19.1. Suppose our counting system was

not decimal but quinary, i.e. no digit
greater than 5, rather than no digit greater
than 9. How would you change the addi-
tive values in the above examples (you can
use decimal, binary or hexadecimal for
those!).

19.2. Checking for excess BCD values
can be done using an XOR technique
which is valid if the count is being incre-
mented rather than added to. Adding to the
BCD value cannot be used with XOR
since the answer could be to either side of
the equality being checked for. Can you
write an XORed BCD incrementing
program?

����

�����
CONCEPTS EXAMINED

Real-time timing at 1/25th second
Counting seconds 0 to 60

CONNECTIONS NEEDED
All Port B to all l.e.d.s.
Port A RA0-RA3 to switches SW0-SW3

(via CP19-CP16)
CP20 to +5V OUT
CP21 to 0V OUT
Crystal oscillator

Moving on from decade counting
between 0 and 99, it is an easy step to
count in BCD from 0 to 59, accurately sim-
ulating the seconds count of a real-time
clock. In doing so, though, it can be useful
to actually increase the count rate available
via the prescaler from 1Hz to 25Hz, 50Hz
or even 100Hz. Indeed, if a crystal oscilla-
tor running at the convenient rate of
3·2768MHz is used, it is actually easier to
work with one of these three rates. This is
due to the sub-division values available
from a crystal of this frequency which can
be used in conjunction with the TMR0.
Prescaler division ratios of 1:128, 1:64 or
1:32 respectively produce these rates.

So now go over to crystal control on TK3’s
p.c.b. Go into TK3’s PIC Configura-tion
option and select crystal XT instead of the
previous RC mode. Leave all other settings as
they are. Send the configuration to the PIC.
Set TK3’s switch S2 to crystal mode. It is
assumed that the crystal on your p.c.b. is
3·2768MHz. Crystals having a different fre-
quency may be used but the clock timings
shown on your l.c.d. will differ accordingly.

All of the programs you have used so far,
with the exception of TK3TUT2, can be
run under crystal control. Consequently, if
you want to go back and look at some of
them again, you do not need to reset the
PIC for RC mode.

Load TK3TUT25.HEX and observe
PORTB’s l.e.d.s. You will see them incre-
menting at a rate of one per second, and the
twin-nibble BCD count will be seen to pro-
gressively step from zero to BCD 59
(01011001), then restart again at zero, just
as would an ordinary seconds clock and,
indeed, it should take one minute for the
full cycle to occur.

In this program the prescaler rate has
been set for 1:128, providing an INT-
CON,2 pulse rate of 1/25th of second. A
counter, CLKCNT, counts down from 25 in
response to the pulses. When it reaches
zero, it is reset to 25 and a seconds counter,
CLKSEC is incremented in BCD.

Checking for the BCD count becoming
ten is performed by the additive (+6) tech-
nique we have already shown. However,
checking for the count being at BCD 60 is
done using the XOR equality testing
method (XOR 01100000 = BCD 60). If
equality exists, the CLKSEC counter is
reset to zero.

���
�
�����
20.1 There are three commands associat-

ed with the XOR check. What XOR coding
would be needed to lose one of them?

����

�����
CONCEPTS EXAMINED

Using 7-segment l.e.d. displays
Showing hours, minutes and seconds
Command IORLW (usage)

CONNECTIONS NEEDED
7-segment display as in Fig.6
CP20 to +5V OUT

CP21 to 0V OUT
Crystal oscillator

Obviously it is not feasible to show
hours, minutes and seconds by just using
BCD formatted values on individual l.e.d.s.
We need a display which is more suited to
being understood. Such a display could be
via alphanumeric liquid crystal displays
(l.c.d.s) and a typical routine using them
will be shown later on.

Another choice is the use of 7-segment
l.e.d. displays, and that is the route we now
take. First, though, we must examine how
the output from PORTB needs to be coded
to drive a single 7-segment common cath-
ode l.e.d. display. We shall then extend the
principle to multiplexing four such dis-
plays to show a full 24-hour clock.

As Tutorial 21 is the only section to use
7-segment displays, you may prefer not to
purchase one at this time, and to just read
about using them, for future reference.
Don’t skip reading this section, though, as
other concepts are examined.

Each segment of a 7-segment l.e.d. dis-
play has to be controlled by individual PIC

�
��
����!��
�
��
����	�����!

CLRF PORTA
CLRF PORTB
BANK1
CLRF TRISA
CLRF TRISB
MOVLW B’10000110’
MOVWF OPTION_REG
BANK0
MOVLW 25
MOVWF CLKCNT
CLRF CLKSEC
BCF INTCON,2

MAIN BTFSS INTCON,2
GOTO MAIN
BCF INTCON,2
DECFSZ CLKCNT,F
GOTO MAIN
MOVLW 25
MOVWF CLKCNT
INCF CLKSEC,F
MOVF CLKSEC,W
ADDLW 6
BTFSS STATUS,DC
GOTO OUTPUT
MOVWF CLKSEC
MOVLW B’01100000’
XORWF CLKSEC,W
BTFSC STATUS,Z
CLRF CLKSEC

OUTPUT MOVF CLKSEC,W
MOVWF PORTB
GOTO MAIN

�
��
����#��
�
��
����	�����#
COMCATHODE

ADDWF PCL,F
RETLW B’00111111’ ; 0
RETLW B’00000110’ ; 1
RETLW B’01011011’ ; 2
RETLW B’01001111’ ; 3
RETLW B’01100110’ ; 4
RETLW B’01101101’ ; 5
RETLW B’01111100’ ; 6
RETLW B’00000111’ ; 7
RETLW B’01111111’ ; 8
RETLW B’01100111’ ; 9
; common cathode codes

COMANODE
ADDWF PCL,F
RETLW B’11000000’ ; 0
RETLW B’11111001’ ; 1
RETLW B’10100100’ ; 2
RETLW B’10110000’ ; 3
RETLW B’10011001’ ; 4
RETLW B’10010010’ ; 5
RETLW B’10000011’ ; 6
RETLW B’11111000’ ; 7
RETLW B’10000000’ ; 8
RETLW B’10011000’ ; 9
; common anode codes

MAIN
BTFSS INTCON,2
GOTO MAIN
BCF INTCON,2
DECFSZ CLKCNT,F
GOTO MAIN
MOVLW 25
MOVWF CLKCNT
INCF CLKSEC,F
MOVF CLKSEC,W
ADDLW 6
BTFSC STATUS,DC
CLRF CLKSEC

OUTPUT
MOVF CLKSEC,W
ANDLW B’00001111’
CALL COMCATHODE
MOVWF PORTB
GOTO MAIN

28 – PIC Tutorial V2 Supplement Everyday Practical Electronics, May 2003

data lines. It does not matter in which order
the data lines are connected to the display
since the way that they are activated can be
set from within the PIC’s controlling pro-
gram. For convenience, here we use
PORTB lines RB0 to RB6 connected in
their natural order to segments A to G.

In Fig.4 are shown the segments and
code letters required to form the ten
numerals 0 to 9. Also shown are two lines
of binary code. The first one shows the bits
which need to be taken high if a common
cathode display is used. The second is for a
common anode display, each line being
taken low to turn on the segment. It is a
common cathode display that we use here;
its pinouts are shown in Fig.5. Connect it to
the p.c.b. as shown in Fig.6, ensuring that
the 330� resistors do not short between
each other. Also connect RA0-RA3 to
TR2-TR5 via CP8-CP11. The program
keeps transistor TR2 turned on constantly.

Load TK3TUT26.HEX. You will see the
individual numerals being shown on the
left-hand digit on a cyclic basis from 0 to 9.
Using the crystal oscillator selected for the

previous Tutorial, the rate of display will
be at one unit per second. In other words, it
can be regarded as being a seconds counter.

Referring to Listing 26, you will see that
the counting routine is very similar to that
in Listing 25, but only dealing with units of
seconds. Now, though, instead of the count
being sent to individual l.e.d.s it is convert-
ed in the COMCATHODE table to the
required 7-segment code for that numeral
when used with a common cathode display.
Since we know that the value held in W
when the table is called can never be
greater than nine, an AND command is not
needed with this table.

����
����
��
Obviously, to show the tens of seconds

as well we need a second 7-segment dis-
play. However, it is not possible, of course,
to use the same PORTB data lines to con-
trol both displays simultaneously. Nor can
we use PORTA for the second display, it
hasn’t enough lines. What we can do,
though, is to connect PORTB to the seg-
ments of both display digits and then alter-
nate the data being output between units
and tens values, turning on each digit (via
their common cathode pins) only when the
relevant data is being sent to them. If this is
done at a fast enough rate, the eye is fooled
into thinking that both displays are on
simultaneously – persistence of vision.

This technique is known as multiplexing,
and what we do in this instance is to put the
common cathode of each display under con-
trol of two separate data lines on PORTA,
RA0 and RA1. However, the pins cannot sup-
ply sufficient current to adequately drive 7-
segment displays (PIC pins can handle around
20mA to 25mA – see PIC datasheets). To pro-
vide enough current to drive them, the port
lines are buffered by transistors TR2 and TR3
configured as current sinks. The emitters are
connected to the 0V line and the collectors are
connected to the common cathodes of the dis-
plays. The displays are turned on when
PORTA lines go high.

Note that for this example the active dig-
its are the righthand two (controlled by
TR4 and TR5) in Fig.6. The other two dig-
its are ignored.

The program which is now required to
drive the two displays is shown in Listing
27. Load TK3TUT27.HEX.

Studying Listing 27, first note that (for
the sake of demo) an XOR command is
used to check for a count value equal to 60
(BCD). Next, and significantly for two dis-
plays, digit-alternating commands have
been introduced. At label MAIN the com-
mand CALL DIGSEL is given. In
DIGSEL, a digit counter (DIGIT) is incre-
mented, ANDed with 1, and the result of
this increment is carried by W into the

Fig.4. Numerals 0 to 9 on a 7-segment l.e.d. display, plus controlling binary codes for common cathode (middle line) and
common anode (bottom line).

Fig.5. Pinouts for a typical 4-digit multi-
plexed 7-segment l.e.d. display.

b
c

e

b
c

e

b
c

e

b
c

e

BC549
TR2

BC549
TR3

BC549
TR4

BC549
TR5

a

b

c

d

e

f

g

D.P.

CP12 CP13 CP14 CP15

4 7 10 14

RB0

RB1

RB2

RB3

RB4

RB5

RB6

RB7

RA0

RA1

RA2

RA3

D1 D2 D3 D4

N.C. N.C. N.C. N.C.

0V

1

11

8

3

13

12

16

15

2 5 6 9

R14 TO R17
10k

330Ω

a
b

c
d

e

f
g

CP8

CP9

CP10

CP11

Fig.6. Connections required to drive a 4-digit 7-segment common cathode l.e.d.
module.

�
��
�������
�
��
����	������
MAIN CALL DIGSEL

BTFSS INTCON,2
GOTO MAIN
BCF INTCON,2
DECFSZ CLKCNT,F
GOTO MAIN
MOVLW 25
MOVWF CLKCNT
NCF CLKSEC,F
MOVF CLKSEC,W
ADDLW 6
BTFSS STATUS,DC
GOTO ENDTIM
MOVWF CLKSEC
MOVLW B’01100000’
XORWF CLKSEC,W
BTFSC STATUS,Z
CLRF CLKSEC

ENDTIM GOTO MAIN
SECTEN SWAPF CLKSEC,W

GOTO OUTPUT
SECONE MOVF CLKSEC,W
OUTPUT ANDLW B’00001111’

CALL COMCATHODE
MOVWF PORTB
INCF DIGIT,W
MOVWF PORTA
RETURN

DIGSEL INCF DIGIT,W
ANDLW 1
MOVWF DIGIT
ADDWF PCL,F
GOTO SECTEN
GOTO SECONE

Everyday Practical Electronics, May 2003 PIC Tutorial V2 Supplement – 29

table that immediately follows. There are
only two jumps in this table, GOTO
SECTEN and GOTO SECONE.

Note that the table is still within the 256
block permitted for tables. If this were not
the case, the table would need to be placed
separately within that block.

Routine SECTEN extracts the tens of
units value. Command SWAPF CLK-
SEC,W swaps the nibbles of the seconds
and holds the result in W, putting the tens
of seconds into the LSN position. The rou-
tine then jumps to OUTPUT, where com-
mand ANDLW B’00001111’ isolates that
nibble, zeroing the MSN bits now in W.

Next, the COMCATHODE table (as in
Listing 26) is called to obtain the 7-seg-
ment code for that number, which is output
to PORTB. Now the digit counter value is
obtained (INCF DIGIT,W) and output to
PORTA to turn on that digit of the display.
The INCF command is used because
DIGIT only alternates between 0 and 1,
whereas PORTA needs to be alternated
between 1 and 2 (binary 01 and 10).

Routine SECONE is similar, dealing with
the units of seconds. Here we can simply get
the LSN by using MOVF CLKSEC,W,
ANDing it with B’00001111’ at OUTPUT.
The rate of alternation between the two dig-
its is several kilohertz, slowing down briefly
each time a time-out is detected.

� ����
�
Whilst one would like to use six digits in

order to display a full 24-hour clock

showing hours, minutes and seconds
simultaneously, this is not convenient since
we only have five lines on PORTA which
can control individual digits. Therefore, we
must compromise and continue to use a 4-
digit display but which can now have its
data sources changed when a switch is
pressed. In this way, we can show either
hours and minutes together, or minutes and
seconds. The program which does this is
TK3TUT28, part of which is shown in
Listing 28. Load TK3TUT28.HEX then
look at listing 28.

Each time the seconds roll over to zero
from 59, the minutes need incrementing;
each time they roll over to zero from 59,
the hours need incrementing. The hours,
though, need to roll over to zero from 23.
As far as incrementing each of the three
counters is concerned, the easiest thing to
do (but not the shortest) is to use three sep-
arate BCD routines – as we do in
TK3TUT28 (see full listing). The minutes
routine is the same as the seconds one, both
requiring a count from 0 to 59, with rou-
tines to check for 10 and 60. The hours rou-
tine, though, requires slight alteration.

With the hours, we need to check when
counts of 10 and 20 occur (+6 check), and
also when 24 occurs (BCD = 00100100).
This check cannot be done in the same way
as for the BCD 60 check. With the latter,
the check is made at the same time as the
tens are incremented. For 24 hours, the
simplest test is to check on each hourly
digit increment:

HRSCLK INCF CLKHRS,F
MOVLW 6
ADDWF CLKHRS,W
BTFSC STATUS,DC
MOVWF CLKHRS
XORLW B’00100100’
BTFSC STATUS,Z
CLRF CLKHRS

The activating of the decimal point,
when required, is done by setting the cor-
rect bit in the code once the table has been
called (BSF PORTB,7), as seen in the
OUTPUT routine:

OUTPUT ANDLW B’00001111’
CALL COMCATHODE
CLRF PORTA
MOVWF PORTB
CALL DIGSHW
MOVWF PORTA
MOVF DIGIT,W
XORLW 1
BTFSC STATUS,Z
BSF PORTB,7
RETURN

Minutes and seconds values are dealt
with in the same manner. Minutes units,
though, are accompanied by the decimal
point bit. Seconds are processed similar-
ly, but without any additional bit setting
for colons or points. In Tutorial 24 we
shall show how a similar result can be
achieved by using fewer commands. A
loop plays an active role and a table is
used when checking the roll-over values
for the time.

In Listing 28, when switch SW4 is not
pressed (checked by BTFSS PORTA,4), a
value of 2 is added to effective value of
DIGIT, to cause the table jumps within
DIGSEL to be to the minutes and seconds

display routines. Pressing SW3 results in
hours and minutes being shown.

You will observe that the brilliance of
the display is less than that previously
seen, due to the multiplexing. In a real
clock situation, the use of a high brightness
display would probably be preferable.

Note that ANDing with B’00001111’ (as
we have done several times in this section)

�
��
�������
�
��
����	������
DIGSEL INCF DIGIT,W

ANDLW B’00000011’
MOVWF DIGIT
BTFSS PORTA,4
ADDLW 2
ADDWF PCL,F
GOTO HRSTEN
GOTO HRSONE
GOTO MINTEN
GOTO MINONE
GOTO SECTEN
GOTO SECONE

DIGSHW MOVF DIGIT,W
ADDWF PCL,F
RETLW 1
RETLW 2
RETLW 4
RETLW 8

MAIN CALL DIGSEL
BTFSS INTCON,2
GOTO MAIN
BCF INTCON,2
CALL CLKADD
GOTO MAIN

CLKADD DECFSZ CLKCNT,F
RETURN
MOVLW 25
MOVWF CLKCNT

SECCLK INCF CLKSEC,F
MOVLW 6
ADDWF CLKSEC,W
BTFSS STATUS,DC
RETURN
MOVWF CLKSEC
XORLW B’01100000’
BTFSS STATUS,Z
RETURN
CLRF CLKSEC

�
��
�������
�
��
����	������
TABLCD ADDWF PCL,F

RETLW B’00110011’
RETLW B’00110011’
RETLW B’00110010’
RETLW B’00101100’
RETLW B’00000110’
RETLW B’00001100’
RETLW B’00000001’
RETLW B’00000010’

MESSAG ADDWF PCL,F
RETLW ’R’
RETLW ’E’
RETLW ’A’
RETLW ’D’
RETLW ’ ‘
RETLW ’E’
RETLW ’P’
RETLW ’E’

SETUP CALL PAUSIT
LCDSET CLRF LOOP

CLRF RSLINE
LCDST2 MOVF LOOP,W

CALL TABLCD
CALL LCDOUT
INCF LOOP,F
BTFSS LOOP,3
GOTO LCDST2
CALL PAUSIT

LCDMSG CLRF LOOP
BSF RSLINE,4

LCDMS2 MOVF LOOP,W
CALL MESSAG
CALL LCDOUT
INCF LOOP,F
BTFSS LOOP,3
GOTO LCDMS2

NOMORE GOTO NOMORE

LCDOUT MOVWF STORE
MOVLW 50
MOVWF LOOPA

DELAY DECFSZ LOOPA,F
GOTO DELAY
CALL SENDIT
CALL SENDIT
RETURN

SENDIT SWAPF STORE,F
MOVF STORE,W
ANDLW 15
IORWF RSLINE,W
MOVWF PORTB
BSF PORTA,5
BCF PORTA,5
RETURN

PAUSIT MOVLW 5
MOVWF CLKCNT
CLRF INTCON

PAUSE BTFSS INTCON,2
GOTO PAUSE
BCF INTCON,2
DECFSZ CLKCNT,F
GOTO PAUSE
RETURN

30 – PIC Tutorial V2 Supplement Everyday Practical Electronics, May 2003

is a common requirement and it is actually
easier to type in using its decimal equiva-
lent of 15, so the ANDLW 15 command
could be used instead.

You will see in Listing 26 that a
COMANODE table is provided as well. In
other applications using common anode
displays this table would be called from the
OUTPUT routine rather than COMCATH-
ODE. In this instance the transistors would
have their collectors connected to the +5V
line and their emitters to the anode control
pins of the display. Common cathode dis-
plays cannot be used with TK3’s p.c.b. as
the transistor emitters are connected to the
0V line.

���
�
�����
21.1. You may have noticed “ghost”

images on the “off” segments for the active
digits in TK3TUT27, but not in
TK3TUT28. Study TK3TUT28’s full list-
ing and amend TK3TUT27 similarly to
eliminate the “ghosts”.

21.2. Create a table that holds all 16 con-
versions for a hexadecimal count (i.e. 0 to
9 and A to F) to be shown on a 4-digit com-
mon anode display. Write a simple count-
ing routine which makes use of it. What
compromise might you have to accept?

21.3. Extend the routine from 21.2 so
that it blanks the display of any leading
zeros (i.e. don’t show 0007, but just show 7
on its own).

����

�����
CONCEPTS EXAMINED

Using intelligent l.c.d.s
Setting l.c.d. contrast
Initialising the l.c.d.s
Sending a message to the l.c.d.

CONNECTIONS NEEDED
L.C.D. as in Fig.7
CP20 to +5V OUT
CP21 to 0V OUT
Crystal oscillator

Having established how 7-segment
displays can be driven by the PIC, we
now show how an alphanumeric l.c.d.
can be used to achieve not only the same
result, but one that has additional facili-
ties as well. The coding required is not
especially complex, although minimum
timing factors for some aspects of
sending data to an l.c.d. have to be
observed.

The first requirement is to show the
basics of how data is output to an l.c.d.
from the PIC. We shall not cover the l.c.d.
itself in any great detail – you are referred
to manufacturer’s datasheets for more
information.

Here, we first show how the l.c.d. is ini-
tialised for 4-bit data transfer from the PIC,
using two control lines, RS and E. Line RS
sets the l.c.d. for inputting either character
data or control data. Line E tells the l.c.d.
to act on the data output to it.

Disconnect the l.e.d. module and con-
nect the l.c.d. to the p.c.b. as in Fig.7.
Typical l.c.d. pinouts are shown in Fig.8.
Load TK3TUT29.HEX and run it. While
reading these next paragraphs, refer to
Listing 29 as appropriate.

The first time the l.c.d. is used, the
Contrast control VR2 should be adjusted
until the display is clearly visible.

����&������
�

When the l.c.d. is under high speed
control from a device such as the PIC, it is
necessary to allow a minimum of 1/5th of a
second between the circuit being switched
on and any data being sent to the l.c.d. So,
after the PIC’s initialisation, the program
jumps to the routine at SETUP which, via
sub-routine PAUSIT, creates this delay by
making use of the prescaler.

The prescaler has been set for an
INTCON,2 pulse every 1/25th of a second,
so a loop beginning at PAUSE is used to
wait for five of these pulses to be complet-
ed, i.e. 1/5th of a second. Then a series of
commands is sent to set the l.c.d. into the
required 4-bit mode. (There are other com-
mand routines possible which achieve a
similar result.) The commands are held in
the table TABLCD, which is accessed from
the routine at label LCDSET. The first
command here clears the loop counter and
the byte (RSLINE) which holds the RS-
controlling bit.

Bit 4 of RSLINE is used to inform the
l.c.d. what type of data is being sent to it.
The bit is cleared for control data, and set
for character data. Now, in the manner of
table use which was demonstrated
earlier, the control commands from
TABLCD are sent to the l.c.d. via the
LCDST2 routine.

The loop counter is then cleared,
RSLINE bit 4 is set and used to inform the
l.c.d. that the next commands being sent to
it are character data.

Then the message held in the table
MESSAG is sent via the routine headed
LCDMSG. The l.c.d. displays this message
on its first line, starting at the left. Now, for

the sake this demo, the perpetual loop at
NOMORE is entered and no more actions
occur. To replay the routine, use the Reset
switch.

In both data sending routines, the l.c.d.
output routine is called by the command
CALL LCDOUT. The entire block
between the start of LCDOUT and the final
RETURN at the end of SENDIT is respon-
sible for sending each byte of 8-bit data to
the LCD as two 4-bit nibbles, to which
control data is then ORed to expand them
to a full 8-bit byte. Nibble data is held in
the LSN of this byte, control data (in this
instance just that for lines RSLINE and E)
is held in its MSN.

On entry into LCDOUT, the data
brought in on W is copied into a temporary
file, STORE. Now a delay loop is entered.
The l.c.d. can only handle bytes of data
coming to it at a rate which allows previous
data received to be processed fully. Details
of the delay required are stated in manu-
facturer’s datasheets. In theory, the delay
depends on the type of data and command
being sent, but on a practical level, a fixed
delay of so many PIC commands can be
used. In this example, LOOPA is set for 50
and then decremented until zero, as per-
formed by the instructions:

MOVLW 50
MOVWF LOOPA

DELAY DECFSZ LOOPA,F
GOTO DELAY

In the author’s experience with many
programs, this delay is satisfactory for a
PIC running at up to about 5MHz. Too
short a delay will result in erratic behaviour
of the l.c.d., probably accompanied by
erroneous display results. The most likely
result of this is that the display will not
enter 2-line mode, characterised by a line
of dark pixels on the upper line, but none
on the lower, which will remain blank. If
this occurs, the delay loop value should be
increased.

Following the delay, there is a call to
SENDIT. In SENDIT, the MS nibble of
data is retrieved from STORE with the
commands:

SWAPF STORE,F
MOVF STORE,W
ANDLW 15

The first command swaps the two nib-
bles within STORE, the second copies
STORE into W, and then W is ANDed
with 15 to isolate bits 0 to 3. The result is
ORed with the RSLINE bit and the byte
is then output to the l.c.d. via PORTB.
The E line is taken high and immediately
low again, telling the l.c.d. to process the
data on its data inputs. A return to the
calling point occurs and then SENDIT is
again called. This time, the LSN is
extracted from STORE and sent to the
l.c.d. in the same way. After two returns,
the program returns to the original calling
point.

It is important to note that the port bits
which are used in these routines to control
the Data, RSLINE and E lines reflect the
physical connections between the PIC and
the l.c.d. as shown in Fig.7. It is permissi-
ble to use other PIC port lines for this
purpose, but the controlling bits of the soft-
ware must be changed accordingly.

RB0

RB1

RB2

RB3

RB4

RB5

N.C.

0V

N.C.

N.C.

N.C. D0

D1

D2

D3

D4

D5

D6

D7

RS

E

R/W CONTRAST

GND

+VE

0V(R/W)

CX

X2
L.C.D.

MODULE

+5V

D4

D5

D6

D7

RS

E

7

8

9

10

11

12

13

14

4

6

5

1

2

3

Fig.7. Connection between l.c.d. and
TK3 p.c.b.

Fig.8. The two “standard” l.c.d. module
pinout arrangements.

Everyday Practical Electronics, May 2003 PIC Tutorial V2 Supplement – 31

���
�
�����
22.1. There are two commands in the

LCDOUT to SENDIT routine which,
while being perfectly legitimate, are actu-
ally unnecessary. What are they and why
are they not needed? (Think “default”.)

22.2. When the l.c.d. is first initialised, it
is possible (though not definite) that all its
character positions (cells) will show as
black squares. Sending the message will
correct that situation for the first eight
cells. How could you ensure that the
remaining eight cells on the top line are set
to “clear” blanks? There are two methods;
try both.

22.3. How would you now set the lower
line to all blanks?

����

�����
CONCEPTS EXAMINED

Coding hours, minutes and seconds for
an alphanumeric l.c.d.

Shortened clock monitoring code
Command SUBLW
Command SUBWF

CONNECTIONS NEEDED
L.C.D. as in Fig.7
CP20 to +5V OUT
CP21 to 0V OUT
Crystal oscillator

Having shown how the l.c.d. can have
data written to it, we now show how the
method can be extended in order to display
24-hour clock data.

Load TK3TUT30.HEX then glance at
the display from time to time while you
read on here.

��������������
���������

Rather late on perhaps, in the program
we are about to display we illustrate the
first use of subtraction. PICs have two sub-
traction commands, SUBLW (Subtract W
from Literal) and SUBWF (Subtract W
from File). The latter command is used
with either the F or the W suffix, e.g.
SUBWF (FILE),F and SUBWF (FILE),W.

One might reasonably have expected
that SUBLW would actually mean Subtract
Literal from W. This is not the case, the
subtraction is that of W from the Literal.
Consequently, unless you keep your wits
about you, this is a command that you
could quite easily use incorrectly.

In the following code, the value in the
file named DEMO is subtracted from 30
and the result put back into DEMO (the
first two lines are just to put an initial value
into DEMO):

MOVLW 20
MOVWF DEMO
MOVF DEMO,W
SUBLW 30
MOVWF DEMO

In this case, the answer is 10 (30 – 20),
even though instinctively we might have
expected 30 to be subtracted from 20. In
this next example, to illustrate SUBWF,
again it is the value already in W which is
subtracted from the value in file DEMO,
the result being returned to DEMO. This is
more logical. (Once more the first two
commands are just to put an initial value
into DEMO.)

MOVLW 20
MOVWF DEMO
MOVLW 5
SUBWF DEMO,F

The answer put back into DEMO is, of
course, 15 (20 – 5).

In these two examples, the value sub-
tracted is less than the value from which it
is being subtracted. What happens if the
opposite is true?

For a start, if the value subtracted is
greater than the value from which it is
being subtracted, the byte simply “rolls-
over”. We have already shown that decre-
menting a value of zero results in an

answer of 255. Decrementing, of course, is
simply a subtraction of 1 from a number
and we could, therefore, consider the 0 – 1
situation as being expressed (256 + 0) – 1
= 255.

What we have done by using the addi-
tion of 256, is to “borrow” the 256 in order
to achieve the correct 8-bit result. The
same roll-over situation applies to subtrac-
tion of numbers greater than 1. Thus sub-
tracting 20 from 10 produces an answer of
246 (256 + 10 – 20 = 246).

We are quite used to “borrowing” in nor-
mal arithmetic, so the concept should be
familiar to you, although we express the
result of subtracting 20 from 10 as
equalling –10.

The difference with PICs (and other
digital devices) is that we cannot produce
a negative answer as such. What we can
do, however, is to use a flag to indicate that
a borrow or negative answer situation has
occurred. With the PIC, the Carry bit is
used for this purpose. In a subtraction
operation we simply test the Carry bit to
establish whether or not there has been a
borrow.

This, though, is where another “invert-
ed” concept has to be applied to SUB com-
mands. Whereas with the ADD commands
the Carry bit is Set if a carry result occurs,
with the SUB commands the Carry bit is
Cleared if a borrow occurs, and it is Set if
a borrow does not occur.

You could, perhaps, regard the Carry bit
as being the bit which is available to be
“borrowed” for the subtraction, hence it
remaining set if a borrow is not needed,
and cleared if it is.

The following are examples of routines
which test the Carry bit in a subtraction
operation:

MOVLW 30
MOVWF DEMO
MOVF DEMO,W
SUBLW 20
MOVWF DEMO
BTFSS STATUS,C
INCF STORE,F
RETURN

The above example will cause STORE
to be incremented since a borrow will
occur when 30 is subtracted from 20. The
next example, 30 – 20, does not result in a
borrow, so STORE remains at its previous
value:

MOVLW 20
MOVWF DEMO
MOVF DEMO,W
SUBLW 30
MOVWF DEMO
BTFSS STATUS,C
INCF STORE,F
RETURN

You will see the use of SUBWF and the
subsequent testing of the Carry bit for the
occurrence of a borrow in TK3TUT30.

����������
In the final part of this series we move

on to some of a PIC’s “sophisticated” oper-
ations. You might also care to obtain a
PIC16F877 (although this is optional) as
we also illustrate some advanced program-
ming techniques that can be used with this
device family, as listed on page 3 of Part 1.

�
��
�������
�
��
����	������
MAIN BTFSS INTCON,2

GOTO MAIN
BCF INTCON,2
CALL CLKADD
GOTO MAIN

CLKADD DECFSZ CLKCNT,F
RETURN
MOVLW 25
MOVWF CLKCNT
MOVLW CLKSEC
MOVWF FSR
MOVLW 3
MOVWF LOOP
CLRF STORE1

ADDCLK INCF INDF,F
MOVLW 6
ADDWF INDF,W
BTFSC STATUS,DC
MOVWF INDF

ADDCL2 MOVF STORE1,W
CALL CHKVAL
MOVWF STORE2
MOVF INDF,W
SUBWF STORE2,F
BTFSC STATUS,C
GOTO CLKSHW
CLRF INDF
INCF STORE1,F
INCF FSR,F
DECFSZ LOOP,F
GOTO ADDCLK

CLKSHW MOVLW B’11000000’
CALL LCDLIN
MOVF CLKHRS,W
CALL LCDFRM
MOVLW ’:’
CALL LCDOUT
MOVF CLKMIN,W
CALL LCDFRM
MOVLW ’.’
CALL LCDOUT
MOVF CLKSEC,W
CALL LCDFRM RETURN

LCDFRM MOVWF STORE2
SWAPF STORE2,W
ANDLW 15
IORLW 48
CALL LCDOUT
MOVF STORE2,W
ANDLW 15
IORLW 48
CALL LCDOUT
RETURN

LCDLIN BCF RSLINE,4
CALL LCDOUT
BSF RSLINE,4
RETURN

32 – PIC Tutorial V2 Supplement Everyday Practical Electronics, May 2003

	Tutorial 7
	Commands ANDLW and ANDWF
	Commands ADDLW and ADDWF
	Listing 8 Flow
	Exercise 7
	Tutorial 8
	Exercise 8
	Tutorial 9
	Exercise 9
	Tutorial 10
	Exercise 10
	Tutorial 11
	Exercise 11
	Tutorial 12
	Exercise 12
	Command NOP
	Exercise 12
	Tutorial 13
	Commands CALL, RETURN and REWTLW
	Exercise 13
	Tutorial 14
	Omitting the AND Command
	Tabled GOTO
	Table Span
	PCLATH
	Exercise 14
	Tutorial 15
	Exercise 15
	Tutorial 16
	Commands FSR and INDF
	Indirect Addressing Demonstrated
	Indirection
	Exercise 16
	Tutorial 17
	Command IOR
	Command XOR
	Modulation
	Exercise 17
	Tutorial 18
	Option Naming
	Timer Sub-division
	Exercise 18
	Tutorial 19
	Checking for Excess Values
	Exercise 19
	Tutorial 20
	Exercise 20
	Tutorial 21
	Multiplexing
	24 Hours
	Exercise 21
	Tutorial 22
	Delayed Start
	Exercise 22
	Tutorial 23
	Commands SUBLW and SUBWF

