
EEPPEE PPIICC
TTUUTTOORRIIAALL VV22

WHAT IT’S ALL ABOUT

A T the time that the original EPE PIC Tutorial was published in March to
May 1998, letters and phone calls to EPE had been showing that interest
in Microchip’s PIC microcontrollers had become intense.

Many readers were asking for more information on how to use
these devices in designs of their own invention.

In the words of one reader, “I find the PIC data sheets
too skimping on everyday detail, and the published
software too complex. Please show me how to get to
grips with the essence of PICs. Tell me, step-by-
step, how to get started with writing simple
programs, how to just turn on a single light
emitting diode, for example. Then take me
forward from there.”

It was to meet this demand that the original
EPE PIC Tutorial was published. Its success
resulted in a CD-ROM version being produced
commercially as PICtutor, complete with its own
ready-built development board. Recently that
version was upgraded to become Assembly for
PICmicro V2 along with its Version 2 PICmicro MCU
board (see elsewhere in EPE for details). Many thousands
of people have learned to program PICs through these
several versions.

However, we frequently receive requests from readers for PIC
programming education that is available at minimal cost. The
aim of this three-part EPE PIC Tutorial V2 series is to
do just that, as detailed more fully on the next
two pages. In a nutshell, though, it gets
you inexpensively started with
PICs, and does so
“step-by-step”.

��������	�
 PART ONE

Everyday Practical Electronics, April 2003 PIC Tutorial V2 Supplement – 1

PIC TOOLKIT TK3
AND ITS VERSATILE

BOARD SHOW YOU HOW!

Quite
simply
the easiest
low-cost
way to learn
about using

PIC
Microcontrollers!

EPE PIC
TUTORIAL V2

01202 873872

���
�
���
���

Over five years on from the publication
of the original EPE PIC Tutorial, a number
of things have changed, yet at the same
time the basics of programming PIC
microcontrollers have not.

This revision is thus a mixture of the old
and the new. The old aspect is that the com-
mands used to program PICs remain the
same. The new aspects, though, are several:

The original EPE PIC Tutorial illustrat-
ed its example programs in a programming
dialect known as TASM. This dialect is
usable with a variety of tables whose con-
tents can be modified to suit many types of
microcontroller and microprocessor. It had
been modified to suit PICs by reader
Darren Crome.

This revision now has its programming
examples written in Microchip’s own PIC
programming dialect, MPASM. This dialect
is the “industry standard” and thus has far
wider appeal than TASM, although the basic
differences between the two are slight.

Secondly, the original EPE PIC Tutorial
concentrated on the now-obsolete
PIC16C84 as being the target device. This
microcontroller effectively became replaced
in 1997 by the pin-for-pin compatible
PIC16F84, which is an equally excellent
device to use to illustrate PIC programming
techniques. More recently the PIC16F84A
has arrived on the scene. The PIC16F84 and
PIC16F84A (two of the devices in the
PIC16F8x family) can be used interchange-
ably in this EPE PIC Tutorial V2 (referred
to from now on as the Tutorial).

������������

Once you know how to program a

PIC16F84 you are well equipped to write
programs for other PICs, although there are
some minor differences in the way that the
various PIC families handle some of the
same functions.

Apart from the PIC16F8x family, two
other PIC families are eminently suited to
hobbyist constructors, notably the
PIC16F87x and PIC16F62x families
(although they are not immediately suited
to this Tutorial). However, in the final part
of this three part series, basic differences
between the way that the PIC16F8x,
PIC16F87x and PIC16F62x families do the
same thing are highlighted and the Tutorial
programs can be readily modified to run on
these devices. Examples of some useful
routines specific to the PIC16F87x family
are included.

It is stressed, though that this Tutorial
does not attempt to be a full tutorial on
every aspect of the three families. Nor does
it examine specific aspects of some other
PIC families whose functions are more
advanced than most readers probably
require.

Also, the Tutorial does not teach the use
of Microchip’s MPASM and MPLAB pro-
gramming software, and it does not cover
any PIC variant or dialect that is pro-
grammed in versions of BASIC.

An important aspect of this revision is
that it has been designed for use with the
EPE PIC Toolkit TK3 printed circuit board
and software (published Oct/Nov 2001),
both of which, plus their two texts, you
need in order to get full benefit from this
Tutorial. See the Resources panel for
details of obtaining them. Note that these

are included on the EPE PIC Resources
CD-ROM. From hereon the software and
p.c.b. are jointly referred to simply as TK3.

It should be noted that TK3 was written
to run under Windows 95, 98 and ME. To
run it under Windows NT, XP and 2000 the
software must be used as described in
Mark Jones’ article Using TK3 with
Windows XP and 2000 of Oct ’02. This
article is also carried on the EPE PIC
Resources CD-ROM.

In keeping with the original Tutorial, we
assume in this series that you have no pre-
vious knowledge of PICs and their pro-
gramming. We thus start as we did before,
by explaining the basic nature of a PIC
microcontroller.

������
�������
A PIC chip, in this context, is a micro-

controller integrated circuit manufactured
by Microchip. When asked about the name’s
origin, Microchip’s Technical Department

2 – PIC Tutorial V2 Supplement Everyday Practical Electronics, April 2003

�
��
��

A special composite EPE PIC
Resources CD-ROM has been produced
to accompany this series. It includes the
Tutorial software for the entire series,
EPE Toolkit TK3 software, complete
reproductions of the TK3 texts of
Oct/Nov ’01, Using TK3 with Windows
XP and 2000 (Oct ’02) and a broad selec-
tion of PIC-related articles published in
EPE over the last several years and
which illustrate practical examples of
various advanced programming func-
tions and techniques. Some unpublished
articles are included as well. The full list
is given elsewhere in EPE.

Alternatively, software for TK3 and
this Tutorial can be downloaded free from
the EPE FTP Site. Disks for both sets of
software (CD-ROM for TK3, and 3.5in
disk for this Tutorial) are also available

from the EPE Editorial Office. Back
issues (or photocopies) or Back Issue
CD-ROMs of published texts can also be
purchased (see the Back Issues page).

The EPE FTP Site is most easily
accessed via the main page at
www.epemag.wimborne.co.uk. Click
on the FTP Site (Downloads) option at
the top, then click down the paths
pub/PICS then select PIC Tutorial V2 or
Toolkit TK3.

The printed circuit board for TK3 is
available from the EPE PCB Service,
code 319. Note, you will require the
relevant back issues or the EPE PIC
Resources CD-ROM to be able too build
this.

See the EPE PCB Service page for the
price and ordering details of the disks
and p.c.b.

RA2

RA3

RA4/TOCKI

MCLR

GND

RB0/INT

RB1

RB2

RB3 RB4

RB5

RB6

RB7

+VE

OSC2/CLK OUT

OSC1/CLK IN

RA0

RA11

2

3

4

5

6

7

8

9 10

11

12

13

14

15

16

17

18

Fig.1. Pinouts for the PIC16F8x family.

��
������������
������������

35 single-word commands (see
Table 1)

1K × 14-bit EEPROM program
memory

68 × 8-bit general purpose SRAM
registers

15 special function hardware registers
(see Table 2 later)

64 × 8-bit EEPROM data memory
1000 program memory erase/write

cycles (typical)
10,000,000 data memory erase/write

cycles (typical)
Data retention >40 years
5 data input/output pins, Port A
8 data input/output pins, Port B
25mA current sink maximum per pin
20mA current source maximum per

pin
80mA maximum current sunk by

Port A
50mA maximum current sourced by

Port A
150mA maximum current sunk by

Port B
100mA maximum current sourced by

Port B
Total power dissipation 800mW
8-bit timer/counter with 8-bit

prescaler

Power-on reset (POR)
Power-up timer (PWRT)
Oscillator start-up timer (OST)
Watchdog timer (WDT) with own

on-chip RC oscillator
Power saving Sleep function
Code protection
Serial in-system programming
Selectable oscillator options:
RC: low cost RC oscillator
XT: standard crystal/resonator

(100kHz to 4MHz)
HS: high speed crystal/resonator

(4MHz to 10MHz) (to 20MHz for
’F84A)

LP: power-saving low frequency
crystal (32kHz to 200kHz)

Interrupts:
External, RB0/INT pin
TMR0 timer overflow
Port B RB4 to RB7 interrupt on

change
Data EEPROM write complete
Operating voltage range: 2·0V to

6·0V (to 5·5V for ’F84A)
Power consumption:

<2mA @ 5V, 4MHz
15�A typical @ 2V, 32kHz

<1�A typical standby @ 2V

TUTORIAL 1:
Minimum commands needed
Port default values
Instruction ORG
Instruction END
Command GOTO
Program TK3TUT1.ASM

TUTORIAL 2:
Clock cycles
File registers
Bits
Bytes
Set
Clear
Command CLRF
Command CLRW
Command BSF
Command BCF
Ports and Port directions
Register STATUS
STATUS register bit 5
Banks 0 and 1
Program TK3TUT2.ASM

TUTORIAL 3:
Names in place of numbers
Case sensitivity
Labels
Repetitive loop
Instruction EQU
Program TK3TUT3.ASM

TUTORIAL 4:
Command MOVLW
Command MOVWF
Command RLF
Command RRF
Command BTFSS
Command BTFSC
Instruction #DEFINE
Instruction BANK0
Instruction BANK1
Register PORTA
Register TRISA
Register PORTB
Register TRISB
Register PCL
Naming numbers
Bit naming
Program counter
STATUS register bit 0
Carry flag
Bit codes C, F, W
Bit testing
Conditional loop
Pin protection
Program TK3TUT4.ASM
Program TK3TUT5.ASM

TUTORIAL 5:
STATUS bit 2
Zero flag
Bit code Z
Command MOVF
Program TK3TUT6.ASM

TUTORIAL 6:
Command INCF
Command DECF
Command INCFSZ
Command DECFSZ
Counting upwards
(incrementing)
Counting downwards
(decrementing)
Use of a file as a counter
Program TK3TUT7.ASM

TUTORIAL 7:
Switch monitoring
Command ANDLW
Command ANDWF
Command ADDWF
Command ADDLW
Nibbles
STATUS bit 1
Digit Carry flag
Bit code DC
Program TK3TUT8.ASM

TUTORIAL 8:
Increasing speed of
TK3TUT8
Bit testing for switch status
Program TK3TUT9.ASM

TUTORIAL 9:
Responding to a switch press
only at the moment of
pressing
Program TK3TUT10.ASM

TUTORIAL 10:
Performing functions
dependent upon which switch
is pressed
Use of a common routine
serving two functions
Program TK3TUT11.ASM

TUTORIAL 11:
Reflecting PORTA’s switches
on PORTB’s l.e.d.s
Command COMF
Command SWAPF
Inverting a byte’s bit logic
Swapping a byte’s nibbles
Program TK3TUT12.ASM
Program TK3TUT13.ASM
Program TK3TUT14.ASM

TUTORIAL 12:
Generating an output
frequency in response to a
switch press
The use of two port bits set
to different input/output
modes
Command NOP
Program TK3TUT15.ASM

TUTORIAL 13:
Command CALL
Command RETURN
Command RETLW
Program TK3TUT16.ASM

TUTORIAL 14:
Tables
Register PCL (again)
Register PCLATH
Program TK3TUT17.ASM

TUTORIAL 15:
Using four switches to create
four different notes
Use of a table to selectively
route program flow
Program TK3TUT18.ASM

TUTORIAL 16:
Indirect addressing
Using unnamed file
locations
Register FSR
Register INDF
Program TK3TUT19.ASM

TUTORIAL 17:
Tone modulation
Command XORLW
Command XORWF
Command IORLW
Command IORWF
Program TK3TUT20.ASM
Program TK3TUT21.ASM
Program TK3TUT22.ASM

TUTORIAL 18:
Register OPTION
Register INTCON
Register TMR0
Use of internal timer
Program TK3TUT23.ASM

TUTORIAL 19:
BCD (Binary Coded
Decimal) counting
Program TK3TUT24.ASM

TUTORIAL 20:
Real-time timing at 1/25th
second
Counting seconds 0 to 60
Program TK3TUT25.ASM

TUTORIAL 21:
Using 7-segment l.e.d.
displays
Showing hours, minutes and
seconds
Command IORLW (usage)
Program TK3TUT26.ASM
Program TK3TUT27.ASM
Program TK3TUT28.ASM

TUTORIAL 22:
Using intelligent l.c.d.s
Setting l.c.d. contrast
Initialising the l.c.d.
Sending a message to the
l.c.d.
Program TK3TUT29.ASM

TUTORIAL 23:
Coding hours, minutes and
seconds for an l.c.d.
Shortened clock monitoring
code
Command SUBLW
Command SUBWF
Program TK3TUT30.ASM

TUTORIAL 24:
Adding time-setting switches
Program TK3TUT31.ASM

TUTORIAL 25:
Writing and reading
EEPROM file data
Register EECON1
Register EECON2
Register EEDATA
Register EEADR
Program TK3TUT32.ASM

TUTORIAL 26:
Illustrating use of EEPROM
data read/write
Converting binary value to
hexadecimal
Program TK3TUT33.ASM

TUTORIAL 27:
Interrupts
Command RETFIE
Program TK3TUT34.ASM
Program TK3TUT35.ASM

TUTORIAL 28:
Command SLEEP
Program TK3TUT36.ASM

TUTORIAL 29:
Watchdog timer (WDT)
Command CLRWDT
Program TK3TUT37.ASM

TUTORIAL 30:
Misc Special Register bits

TUTORIAL 31:
INCLUDE files command
Embedded configuration data
Embedded Data EEPROM values
Embedded PIC type data
Embedded Radix
Program TK3TUT38.ASM

TUTORIAL 32:
PIC16F8x, PIC16F87x,
PIC16F62x family coding
differences
PIC16F87x PORTA
PIC16F87x Data EEPROM use
PIC16F62x PORTA
PIC16F62x Data EEPROM use
Program TK3TUT39.ASM
Program TK3TUT40.ASM

TUTORIAL 33:
Converting binary values to
decimal
Program TK3TUT41.ASM

TUTORIAL 34:
Multiplication routine
Program TK3TUT42.ASM

TUTORIAL 35:
Division routine
Program TK3TUT43.ASM

TUTORIAL 36:
ADC conversion routine for
PIC16F87x family
Program TK3TUT44.ASM

TUTORIAL 37:
CBLOCK command
Interfacing to external serial
EEPROM chips, for PIC16F87x
family
Program TK3TUT45.ASM

TUTORIAL 38:
Outputting serial data at a
specified BAUD rate, for
PIC16F87x family
Program TK3TUT46.ASM

TUTORIAL 39:
Practical example recording
analogue data to serial
EEPROM and subsequent
outputting as RS-232 serial data
Program TK3TUT47.ASM

TUTORIAL 40:
Programming
PICs vs. hardware
Summing-up

APPENDIX A:
Bugged Teaser!

APPENDIX B:
Useful PIC information
Further reading

TUTORIAL CONCEPTS EXAMINED

Everyday Practical Electronics, April 2003 PIC Tutorial V2 Supplement – 3

replied, “PIC is not an acronym; it is just a
trademarked name that General
Instruments came up with a long time ago”.
(GI were the originators of PICs.)

A microcontroller is similar to a micro-
processor but it additionally contains its
own program command code memory, data
storage memory, bi-directional (input/out-
put) ports and a clock oscillator. Many
microprocessors require the use of addi-
tional chips to provide these requirements;
microcontrollers are totally self-contained.

The great advantage of microcontrollers is
that they can be programmed to perform
many functions for which many other chips
would normally be required. This not only
makes for simplicity in electronic designs,
but also allows some functions to be per-
formed which could not be done using nor-
mal digital logic chips – i.e. circuits for
which, previously, a microprocessor and
peripheral devices would have been required.

PICs are manufactured and supplied
“empty”. That is, they are without program
codes (commands) and cannot control a
circuit until they have been provided with a
program that tells them what to do. It is the
task of the program writer (you) to tell
them what that is.

The commands are written in a spe-
cialised form of English, largely consisting
of mnemonics, known as the “source
code”. An assembly program (such as TK3)
then translates (assembles) the source code
commands into a numerical form that the
PIC can understand, the “program code”.
This code, which is normally in hexadeci-
mal, is then sent (loaded) in binary format
to the PIC by electronic hardware, such as
TK3’s p.c.b.

������
�����

There are many families of PIC micro-

controller available, ranging from those
which can only be programmed once, to
those that can be repeatedly repro-
grammed. The former are typically known
as One Time Programmable (OTP)
devices, and because of this characteristic
are not well-suited to hobbyist use since
they cannot have their software code
changed once they have been programmed.

There are two basic families of repro-
grammable PICs: those that require an
ultra-violet light unit to erase their previous
data before being reprogrammed, but
which are now essentially obsolete, and
those which are electrically erasable.

In the latter category fall the three device
families already mentioned, of which it is
the PIC16F84 device we use here. It has
been chosen because of its ease of repro-
gramming and because it does not have
additional features that can prove difficult
to understand for beginners. Its pinouts are
shown in Fig.1, and its basic attributes
given in the Specifications panel.

It is an EEPROM (electrically erasable
programmable read only memory) device,
also known as a “Flash” device, hence the
“F” infix in its type number. This means
that it can be rapidly reprogrammed as
often as you wish, without the need for
ultra-violet erasing.

�����

���

Note that there are several sub-versions

of individual PIC types, having suffixes
such as -04, -10 and -20. The suffix indi-
cates the maximum clock rate at which the

chip can be used: 4MHz, 10MHz and
20MHz respectively. You may use any
device speed rating for this Tutorial,
although the -04 is likely to be stocked by
more component suppliers.

The PIC16F84 used here has two
input/output (I/O) ports, Port A and Port B.
Port A has five pins (RA0 to RA4), and
Port B has eight pins (RB0 to RB7). We
shall be using the PIC in two of its four
oscillator modes, RC (resistor/capacitor)
and XT (standard crystal up to 4MHz), the
former being variable, the latter using a
3·2768MHz crystal.

To re-emphasise an earlier point, much
of the information about the commands
which we present here is, in most
instances, applicable to other members of
the PIC family. Once you understand a
PIC16F84 you should have no difficulty
applying your knowledge to other PICs.

�������������
There are six things that you need in

order to program a PIC:

� PC-compatible computer having a stan-
dard (Centronics-compatible) parallel
printer port (USB ports are not suitable)

� purpose built programming hardware
board (e.g. TK3)

� standard (Centronics) parallel printer
port connecting cable

� suitable power supply (TK3 runs from
9V d.c., which can be supplied via a
plug-in mains adaptor)

� word-processing program (text editor)

� assembly and send (download) software
program (e.g. TK3)

It is worth noting that this Tutorial and
the TK3 software can be used with
Magenta’s version of the TK3 board, and
with the commercial Version 2 PICmicro
MCU Development Board. However, these
two boards do not have the numbered CP
connection points referred to in this text
regarding the EPE TK3 board, but they do
have pin function notations and the con-
nections should be obvious.

Data is output from the computer to the
PIC via the parallel printer port (addresses
378h, 278h and 3BCh are supported by
TK3). It is output serially, data on port line
D0, and a clock signal on line D1.
Additional computer printer port lines are
used by TK3 to enable such functions as
reading back program code from a PIC.

You must be able to use a word-process-
ing program. This must produce a text file
that is totally without formatting and printer
commands. That is, it must be able to gen-
erate a pure ASCII text file (and to input
one). It is stressed that the source code
(.ASM) files must be in pure ASCII text
formats without printer or display format

TABLE 1. PIC COMMAND CODES FOR PIC16F8x, PIC16F87x
AND PIC16F62x

Command/Syntax Flags Cycles Description Tutorial
affected discussed

BYTE-ORIENTATED FILE REGISTER OPERATIONS
ADDWF f,d C, DC, Z 1 Add W and f 7
ANDWF f,d Z 1 AND W with f 7
CLRF f Z 1 Clear f 2
CLRW – Z 1 Clear W 2
COMF f,d Z 1 Complement f 11
DECF f,d Z 1 Decrement f 6
DECFSZ f,d – 1 (2) Decrement f, skip if 0 6
INCF f,d Z 1 Increment f 6
INCFSZ f,d – 1 (2) Increment f, skip if 0 6
IORWF f,d Z 1 Inclusive OR W with f 17
MOVF f,d Z 1 Move f 5
MOVWF f – 1 Move W to f 4
NOP – – 1 No operation 12
RLF f,d C 1 Rotate left f through Carry 4
RRF f,d C 1 Rotate right f through Carry 4
SUBWF f,d C, DC, Z 1 Subtract W from f 23
SWAPF f,d – 1 Swap nibbles in f 11
XORWF f,d Z 1 Exclusive OR W with f 17

BIT-ORIENTATED REGISTER OPERATIONS
BCF f,b – 1 Bit clear f 2
BSF f,b – 1 Bit set f 2
BTFSC f,b – 1 (2) Bit test f, skip if 0 4
BTFSS f,b – 1 (2) Bit test f, skip if 1 4

LITERAL AND CONTROL OPERATIONS
ADDLW k C, DC, Z 1 Add literal and W 7
ANDLW k Z 1 AND literal with W 7
CALL k – 2 Call subroutine 13
CLRWDT – TO, PD 1 Clear Watchdog Timer 29
GOTO k – 2 Go to address 1
IORLW k Z 1 Inclusive OR literal with W 17, 21
MOVLW k – 1 Move literal to W 4
RETFIE – – 2 Return from interrupt 27
RETLW k – 2 Return with literal in W 13
RETURN – – 2 Return from subroutine 13
SLEEP – TO, PD 1 Go into standby mode 28
SUBLW k C, DC, Z 1 Subtract W from literal 23
XORLW k Z 1 Exclusive OR literal with W 17

4 – PIC Tutorial V2 Supplement Everyday Practical Electronics, April 2003

commands embedded in them. (TK3 offers a
choice of editors, including DOS Edit,
Windows Notepad and Windows Wordpad.)

����������
���������

To use this Tutorial with the basic TK3
p.c.b. you need the following additional
components:

330� resistor, 0·25W 5% carbon film (8
off)

1�F capacitor, axial elect. 10V
2-line, 16-characters per line alphanu-

meric liquid crystal display module and
datasheet

Optional: 4-digit multiplexed common
cathode 7-segment l.e.d. display module
and datasheet

Personal (high-impedance) headphones
Jack socket to suit headphones
Extra push-to-make switch for connec-

tion via flying leads
Stranded connecting wire
Solder

������
�����
Throughout this Tutorial we shall exam-

ine in a fair amount of detail the 35 basic
PIC commands. It is hoped that this will
give you all the necessary information that
will enable you to conceive a design in
which you can use a PIC16F84 to control
whatever situation you wish, and to write
the code that will let it do so.

There is, though, much more to writing
programs than you may at this moment
fully appreciate. Knowledge about individ-
ual commands and the way in which they
can be used is not enough in itself.

Programming is a way of looking at the
world that other people may not recognise.
You must have the mental ability to see
each programming situation as a step by
step function, visualising and analysing in
your mind exactly how it is that you need
to specify the complete program flow.

You have to write the sequence of events
with the correct grammar, with the correct
spelling and in the correct order.
Undoubtedly you will make mistakes
while you are writing the code, failing to
see the correct sequence of events and
using incorrect command structures.

You require the ability to analyse what
you have done wrong and to correct it. You
are likely to be confronted with an overall
task that may, on occasion, take you into
several days or even weeks of dedicated
concentration.

Readers have occasionally asked how
they can be taught to think like a program-
mer. There is no easy way in which this can
be taught. Some people have the ability,
some do not. The best way to learn is by
actually writing snippets of code and get
those to work, giving you the experience
and confidence to progress to more com-
plex situations. Throughout this Tutorial
we try to encourage you in this approach.

Programming, to those who have the abil-
ity to see things “as they are” and not “how
they seem to be”, can become extremely
addictive. You could find yourself com-
pelled to get back to the keyboard and PIC
programmer at any conceivable hour. You
had better have an understanding family!

��

�������
���

�
To get you started programming PICs

through this Tutorial, you need the TK3

board mentioned earlier plus the few extra
components just listed. TK3 already has
eight light emitting diodes (l.e.d.s), four
pushbutton switches and four uncommitted
(open-collector) npn transistors.

These facilities help to illustrate the pro-
gram examples discussed in the text and
encourage you to build up your experience
of how the PIC16F84 can be made to
respond to different practical situations.

In this text, we start at the very begin-
ning of programming. The first lesson is
about the very minimum of information
that needs to be written into a program list-
ing before the PIC can do anything else.

We then, “step by step”, take a specific
very simple task, such as turning on an
l.e.d., and describe in detail each of the
commands that are required to do the task.

Having described one task, we then take
that idea a stage further, adding a few more
commands that will enhance the capabilities
of the program. Each of these commands is
similarly discussed in detail. Thus we
progress, taking simple ideas, and illustrating
how they can be achieved and then enhanced.

We feel that this approach is far more
useful than describing each and every one
of the commands in turn before we ever get
to use them. Most people learn by doing,
reading about things in short sections and
applying the knowledge in practical bite-
sized chunks. A complete chapter on all the
commands in sequence would be too much
to remember and understand in one go.

The complete list of Microchip’s com-
mands for the PIC16F8x, PIC16F87x and
PIC16F62x families is shown in Table 1. All
are discussed and demonstrated. In the early
years of PICs there used to be two others,
OPTION and TRIS, but Microchip have
dropped them from their recent PIC families.

As you will see, there are a lot of “bit-
orientated” sub-commands available as
well as the main commands. Some of these
are similar in operation and close examina-
tion will be given only to the principal ones
– once you understand these, use of the
similar bit-setting commands available will
become obvious.

����
����
������

The Tutorial is split into numbered sec-

tions. Each deals with specific coding top-
ics but, in most cases, is a direct follow-on
from the previous one, and is nearly always
visually illustrated by the displays on the
TK3 p.c.b. The exception to the latter is
when sound is used as the output medium,
when the personal headphones are needed.

At the end of most sections there are a
few simple exercises which allow you to
experiment with the program presented in
that section. You will only be expected to
use the commands that have already been
introduced to you. None of them should tax
your brain too much, but they will, hope-
fully, encourage you to think of alternative
ways in which the same basic task can be
tackled, or to consider other tasks that can
be achieved using similar techniques.

By the end of the complete Tutorial, you
will know how to get the PIC16F84 to
respond to switches and other external sig-
nal sources, send data to various types of
display, to create sound, to be the heart of a
24-hour clock and to store data in its non-
volatile EEPROM memory.

Readers who have had experience of
programming in BASIC, or with other

types of microprocessor or microcon-
troller, will find that once a few commands
have had their functions explained, using
them will rapidly become instinctive. The
author, having many years of such experi-
ence, effectively learned about PICs and
how to use them over a single weekend,
just by doing a bit of experimenting.

Other readers without such experience
will, it has to be said, have to become
accustomed to understanding program-
ming itself as a step by step process. An
analytical mind is required and, as said ear-
lier, there is no easy way in which pro-
gramming can be taught to those who lack
this ability.

����
�������
��
�

Throughout this Tutorial we present var-

ious programming exercises at which to try
your hand. In most cases, you are request-
ed to modify an existing tutorial program.
This requires it to be saved, assembled and
sent to the PIC.

It is important that when you make these
changes, you do not save the variant under
the same name as the original. It must have
a different name. If you do save under the
same name, the original file will be
replaced by the new one. You can save each
program variant by any name of your
choosing, but use the same .ASM exten-
sion as the examples use. You might con-
sider using TRY1.ASM, TRY2.ASM, etc.

It is recommended that you save the
original file under the new name before
you make any changes, to avoid curse-wor-
thy errors! But if you do make a mistake
and overwrite something you should not,
the original can be recopied from its disk or
FTP site download.

Having saved your changed file, you
now assemble and send it to the PIC.

We shall not be giving possible solutions
(of which there could be several) to any of
the exercise questions. It is expected that
you will persevere until you find a work-
able solution. Only in this way will you get
into the habit of being presented with a
computing problem, which you have to
solve on your own, and then solving it.

This last statement was made in the orig-
inal Tutorial text but we still periodically
get asked what the solutions are. We are
hard-hearted on this point and don’t offer
solutions! If you want to become a pro-
grammer, you’ve got to get your brain
thinking like one. The exercises are all sim-
ple and have simple solutions, we would
not be doing you any favour by telling you
some answers.

We are now almost in a position to start
telling you about writing programs for a
PIC16F84 and for you to start getting your
brain into gear – it’s really all very logical!

�
���
�����
From hereon you need the TK3 software

running on your PC. It should be loaded
and run as explained in its published text.
You also need the TK3 p.c.b. connected to
the PC via its parallel printer port cable,
and a PIC16F84 in the allocated socket.
You do not need the l.c.d. or 7-segment
l.e.d. modules connected at this time.
However, if the l.c.d. module is already
connected you do not need to remove it.

All the software for this Tutorial should
be in the same folder. This may be the same
folder as used for TK3’s software, or in

Everyday Practical Electronics, April 2003 PIC Tutorial V2 Supplement – 5

another folder having any name of your
choosing. There is no “installation”
required, just copy the files into this folder
from your disk or FTP site download,
using Windows’ own copying facilities.

As we progress, you need to connect
various PIC pins to such on-board items as
l.e.d.s and switches. This will be explained
as required. In the meantime, keep your
soldering iron switched on and ready!
Remember that you should always switch
off TK3’s power before making any sol-
dered changes. It is also recommended that
the printer port cable should be disconnect-
ed at this time as well.

The first few Tutorials require PIC Port
B to control the eight l.e.d.s (LD0 to LD7)
on TK3’s board (see Fig.2). Solder short
lengths of wire between the allocated
RB0/RB7 pins and the CP0/CP7 pins,
strictly observing the same numerical order
– RB0 to CP0, RB1 to CP1 etc.

Additionally, solder a 1�F capacitor
across (or in place of) the existing capaci-
tor C7 (unless C7 is already a 1�F device,
in which case leave it in position), its posi-
tive lead facing preset VR1. This reduces
the oscillator rate to a very slow range.

Also for the sake of these Tutorials, put
a sticky label in front of switches S3 to S6
and label them SW3, SW2, SW1, SW0, in
that order from left to right.

�����������
�����
The first thing to understand is that all

PICs must be “configured” for the applica-
tion they are intended to control. Such
configuration includes the selection of oscil-
lator type, and matters such as Watchdog
timer and Code Protection bits use (which
are discussed in Part 3). Once the configura-
tion has been sent it is not normally neces-
sary to change it for the same application.

SW3 SW2 SW1 SW0

XTAL

RCRC RATERESET

R
5

R
1

R
6

R
2

R
7

R
3

R
8

R
4

IC2

IC8
R
14

R
15

R
16

R
13

TR2 TR3 TR4 TR5

CP
12

CP
13

CP
14

CP
15

e e e e
b b b b

c c c cTP1 TP2 TP3 TP4 TP5 TP6

GP0

GP1

GP2

CP
8

CP
9

CP
10

CP
11

CP
22

CP
7

CP
6

CP
5

CP
4

CP
3

CP
2

CP
1

CP
0

LD7 LD6 LD5 LD4 LD3 LD2 LD1 LD0

a

k

a

k

a

k

a

k

a

k

a

k

a

k

a

k

a

k

RM1

CP24

CP23

TP
7

TP
8

CP25

IC3

IC5

R10

D1
a

k

C9

C8

TR1e b
c

R
11

C12

C2

C1

IC1

C7

VR1

C3

+

+ R
12

R
9

TP9
RE0

RE1

RE2

C
11

S3 S4 S5 S6

R
20

R
17

R
19

R
18

RD1
RD0
RD2
RD3

RD4

RD5

RD6
RD7

RA0
RA1

RA2

RA3
RA4

RA5

RC0

RC1
RC2
RC3

CP16 CP17 CP18 CP19
CP20

CP21

IC6

RB0
RB1
RB2

RB3
RB4
RB5
RB6
RB7

RC4

RC5
RC6

RC7

D7

D6
D5

D4

RS
E

0V

0V

0V(R/W)

CX
+5V

+5V +5V
OUT

+7/15V

+7/15V

CLK
DATA

MCLR

C
10

C
4

VR2
L.C.D.

CONTRAST

C6

+

C5

IC4
IN

COM
OUT

IC7

SK1

S1 S2
X1

OSC OUT

EXT OSC*

0V

0V
OUT

VR3

Fig.2. Component layout for the TK3 board to which you should refer for the connection points required for the exercises.

Main screen of TK3’s software suite.

Configuration settings used for the first several experiments, putting the PIC16F84
into RC oscillator mode.

6 – PIC Tutorial V2 Supplement Everyday Practical Electronics, April 2003

In this series the setting of the configura-
tion data into the PIC is treated as one pro-
gramming operation. Sending the program
itself is then another. As discussed in Part
3, it is also possible with some program-
mers (such as TK3) to “embed” the config-
uration code into the program itself. When
the program is sent to the PIC, the configu-
ration is then automatically set as required.

Note that occasionally (and for a variety
of reasons) the configuration in the PIC
can become corrupted. If you find that a
program which you believe should run
does not, run the configuration program
(about to be described) to ensure that the
PIC is correctly configured, and then re-
send the program.

Sometimes corrupted configuration can
prevent another program from replacing an
existing one, the latter continuing to run even
though the new one has been sent. In this
case, use TK3’s Erase PIC option, and failing
that run its Clear Code Protection routine
(both functions described in TK3’s text).

Be aware that the time taken to send a
program (.HEX) file to the PIC depends on
its length. A delay exists because the PIC
requires a minimum amount of time to
store each command when received. The
speed of operation has nothing to do with
the speed of your computer.

Before starting the Tutorials and their
exercises, configure your PIC16F84 via
TK3. Click on the Send/Read Config Data
button on TK3’s main screen (top centre –
PIC Configuration panel). Set the configu-
ration for RC (resistor/capacitor oscillator)
with all other functions off. Send the data
to the PIC. Always keep Code Protection
off throughout these Tutorials.

If your PIC has been used before in
some other application, you should also
clear its existing program and data EEP-
ROM contents via TK3’s Erase PIC button.

As the PIC is configured for RC opera-
tion, TK3’s RC/XTAL slide switch (S2)
also needs setting for RC. Set the RC con-
trol preset VR1 for slowest oscillator rate
(fully anti-clockwise).

(If you are not clear about any aspect
relating to TK3, re-read its published text.)

����
������
�����

There are four formats that can be used

to express numerical values in a program.
They may be expressed in decimal (e.g. 0,
4, 5), or in hexadecimal (indicated by a
prefix of H’, e.g. H’00’, H’04’ and H’05’
in this case), or in binary (indicated by a
prefix of B’, e.g. B’00000000’,
B’00000100’ and B’00000101’). Prefixed
values must be concluded with an apostro-
phe suffix (’) – as used in the prefix. On
your keyboard the apostrophe required is
that which is marked below the @ symbol
(the one at top left by the numerals is not
suitable).

Be aware that some PIC assembly pro-
grams (but not TK3) may require decimal
numbers to be prefixed with D’, e.g. D’10’
or D’255’. It is also worth noting that some
assembly programs (including TK3)
accept the use of the dollar sign ($) to indi-
cate hex, e.g. $F7 instead of H’F7’, and for
binary numbers to be prefixed by a per-
centage sign (%), e.g. %01010101 instead
of B’01010101’.

Check with any other assembly
program’s documentation before using the
shorter method. The D’, B’ and H’ prefixes

are those used with Microchip’s own
MPASM assembly programs and they do
not accept % or $ prefixes. The B’ and H’
prefixes are used throughout these
Tutorials. TK3 accepts both prefix formats.

You will find TK3’s Binary to Hex to
Decimal conversion option useful if you
wish to convert between the three numeri-
cal formats.

����
�����
CONCEPTS EXAMINED

Minimum commands needed
Port default values
Instruction ORG
Instruction END
Command GOTO

The absolute bare minimum require-
ments for any PIC program that is to be
assembled (compiled) are shown in
Listing 1.

In fact, none of the statements in this
listing have anything directly to do with a
functioning software program. Six are
aimed directly at the software assembly
program, the others are comments to the
human programmer, or other reader. Such
comments include program title and
function, and notes about what tasks par-
ticular program instructions within the list
are intended to perform.

Comments must always be preceded by
a semicolon (;) so that the assembler does
not try to treat them as program com-
mands. Comments may appear anywhere
within the program, and in any position
where they do not interfere with a program
command. It is convenient, though, to
place them tabulated a short distance
beyond the end of program command
lines.

To take Listing 1 in detail, you will see
that it starts with two comments, identify-
ing the listing and its function:

; TK3TUT1.ASM
; minimum requirement

Next come five commands which are
aimed at the software assembly program
(e.g. TK3) as well as the PIC. They need not
normally concern you, repeating the com-
mands parrot-fashion in any software you
write will normally suffice (unless inter-
rupts are involved – discussed in Part 3).

The three ORG (origin) commands and
their associated address (program memory
location) values tell the assembly program

at which memory address within the PIC a
particular set of subsequent commands is
to be placed.

Position ORG 0 is known as the Reset
Vector. It is to this address that the PIC
jumps when it is first run or subsequently
reset.

Position ORG 4 is known as the
Interrupt Vector. It is to this address that
PIC jumps if an interrupt occurs. The sub-
ject of interrupts will be dealt with in
Tutorial 27. Ignore the concept for the
moment.

Position ORG 5 is the Start of Program
Memory, i.e. it is the first available
position within the PIC at which the actual
program itself can start.

The first two ORG statements have to be
followed by a GOTO command (the first
of the recommended 35 commands that the
PIC understands and which you need to
know!), plus an address value. The GOTO
command (not surprisingly) simply tells
the PIC to GO TO the address stated. The
addresses can be any chosen by the pro-
gram writer, but in these Tutorials are
taken as GOTO 5, address 5 being the Start
of Program Memory, as indicated by the
ORG 5 statement.

You will notice that locations 1, 2 and 3
are not mentioned. These are reserved by
the PIC and are not available for normal
program use.

The bracketed statement in the listing
following ORG 5 is aimed at you, the pro-
gram writer: it tells you where your pro-
gram is to be written. This will become
evident as we progress through the exam-
ple listings.

The final statement (END) is only
required by some assembly programs.
With TK3 it is not essential, but you should
always include it at the very end of any
listing in case your programs are assem-
bled by software that does require it.

Having included the essential first five
commands and the END statement, every-
thing else beyond ORG 5 is up to you.

����������
You might think that when

TK3TUT1.ASM is assembled and loaded
into the PIC, the PIC will be incapable of
doing anything – it hasn’t been told of any-
thing to do, other than GOTO 5. Almost
true, but not quite!

PICs have been told in manufacture to
adopt certain “default” conditions when
first switched on (those for the PIC16F84
will be shown in Part 3). One of these
default conditions is that Port A and Port B
are configured (set) to act as inputs. In this
condition they are simply held in a high-
impedance state. What is not configured at
this time is the binary value which is avail-
able to be output via those pins when they
are first set as outputs from within the
program.

At switch-on, any number could be set
randomly within the PIC’s memory, of
between 0 and 255 (B’00000000’ to
B’11111111’) for Port B (eight pins), and
0 to 31 (B’00000’ to B’11111’) for Port A
(five pins). It is often preferable, therefore,
to set port output values to a known value
as part of the opening program statements.
This, too will become apparent as we
progress.

It is also worth noting that PIC pins
should never be left as “floating” inputs. If

��
������ ��
��
��

�	!����

; TK3TUT1.ASM
; minimum requirement

ORG 0 ; Reset Vector address
GOTO 5 ; go to PIC address

location 5
ORG 4 ; Interrupt Vector address
GOTO 5 ; go to PIC address

location 5
ORG 5 ; Start of Program

Memory

; (your program goes in here)

END ; final statement

Everyday Practical Electronics, April 2003 PIC Tutorial V2 Supplement – 7

any PIC pins remain unused in a PIC-con-
trolled circuit, they should either be biased
to one or other power line by individual
resistors (say 10k� to 100k�), or set as
outputs in a logic 0 (low) condition.

There are no exercises for Tutorial 1.

����
����"
CONCEPTS EXAMINED

Clock cycles
File registers
Bits
Bytes
Set
Clear
Command CLRF
Command CLRW
Command BSF
Command BCF
Ports and Port directions
Register STATUS
STATUS register bit 5
Banks 0 and 1

CONNECTIONS NEEDED
All Port B to all l.e.d.s.
Capacitor C7 as 1�F
Preset VR1 set to maximum resistance

(fully anti-clockwise)

At this point in time, a PIC without pro-
gram commands is of no benefit to us! We
shall now demonstrate a simple program
which just turns on a series of eight l.e.d.s
connected to Port B. Look at Listing 2.

As discussed in Tutorial 1, you will see
comments at the start of the listing and
within it, all preceded by a semicolon. You
will also see the ORG and END state-
ments, plus the GOTO 5 commands.
Sandwiched between ORG 5 and END are
several lines of code. The PIC considers
the first program command (CLRF 6) as
being at its address location 5, which is
where the assembly program will place it
when it loads the code into the PIC.

Ignoring the numbers following the
commands, there are only three different

commands in use in this program section
(routine): CLRF, BSF and BCF. They sim-
ply stand for CLeaR File, Bit Set File and
Bit Clear File. An allied command to CLRF
is CLRW (CLeaR Working register).

Via TK3, assemble the program
TK3TUT2.ASM, and load the resulting
TK3TUT2.HEX code into the PIC. Having
loaded it, the program automatically starts
running. There will be a few seconds wait
before you see anything happening.

From here on, whenever you are asked
to load or run a program, it must first be
assembled, and then its HEX code loaded
into the PIC. It will automatically run when
loading has finished.

At present, the oscillator which controls
the PIC is only running at a very slow
speed, about 1Hz or so (depending on the
tolerance of the C7 and VR1 values). The
internal workings of the PIC16F84 (and
other PIC types) automatically divide any
clock frequency by four, taking a minimum
of four counts to process a single com-
mand. During each of the four intervening
pulses, different aspects of the command
are processed. To all intents and purposes,
each command takes four clock pulses.

Each batch of four clock pulses is known
as a clock cycle. Most commands take just
one clock cycle, although some take two,
partly depending on conditions resulting
from their operation (see Table 1). The
GOTO command takes two cycles to com-
plete, whereas BSF, BCF, CLRF and
CLRW take just one cycle.

The results of the first six commands
will not produce any visible result. After a
few seconds, though, each l.e.d. connected
to Port B will come on in turn, in order of
LD0 to LD7, with a pause between each
change. When the final l.e.d. (LD7) has
come on, there are no more instructions to
perform, so nothing more happens (in fact,
the PIC is actually working its way through
each of its locations that have not been pro-
vided with code by the program).

To see the sequence again, press TK3’s
Reset switch (S1), whereupon the program
will restart from the beginning. The rate at
which it occurs can be changed by adjust-
ing preset VR1.

(Note that if the l.c.d. module is already
connected, a very slight glow from some
l.e.d.s. may just be visible, and the top line
of the l.c.d. will contained darkened cells –
this is normal.)

But, how does the program do what you
see it has done? First, we’ll tell you what
File registers are and what commands
CLRF, BSF and BCF do.

�����
���
��

The PIC16F84, and the other PICs men-
tioned earlier, have five areas of memory
(see Table 3 for quantities):

1. Program Memory (EEPROM) in
which are stored the commands that form
the program, and where the program of
TK3TUT2 is now held.

2. Data Memory (SRAM – static random
access memory) in which you can tem-
porarily store the results of any action that
the program performs (the data is lost
when the power is switched off).

3. Data Memory (EEPROM) in which
you can indefinitely store any data that you
wish to retain after power has been
switched off (it will be discussed in
Tutorial 25).

4. Special Function Memory (SRAM),
whose attributes determine what actions
the PIC takes in respect of program com-
mands (Table 2).

5. Working Memory (SRAM – 1 byte),
through which many operations have to
pass during program performance (in other
processors the Working Memory may be
called the Accumulator).

The results (data) of any program action
can be directed to be stored at any of the
memory areas numbered 2 to 5 above. With
items 2, 3 and 4 the destination is known as
a File destination. With item 5, the
Working Memory or Register, the destina-
tion is known as, not surprisingly, the
Working destination.

��
�����"�#

�
��
����	!���"

; TK3TUT2.ASM
; setting Port B to output mode and turn
on each l.e.d.

ORG 0 ; Reset Vector address
GOTO 5 ; go to PIC address 5
ORG 4 ; Interrupt Vector address
GOTO 5 ; go to PIC address 5
ORG 5 ; Start of Program Memory
CLRF 6 ; set all Port B pins to logic 0
BSF 3,5 ; instruct program that a

Bank 1 command comes
next

CLRF 6 ; set all Port B pins as
outputs

BCF 3,5 ; instruct program that a
Bank 0 command comes
next

BSF 6,0 ; set Port B pin 0 to logic 1
BSF 6,1 ; set Port B pin 1 to logic 1
BSF 6,2 ; set Port B pin 2 to logic 1
BSF 6,3 ; set Port B pin 3 to logic 1
BSF 6,4 ; set Port B pin 4 to logic 1
BSF 6,5 ; set Port B pin 5 to logic 1
BSF 6,6 ; set Port B pin 6 to logic 1
BSF 6,7 ; set Port B pin 7 to logic 1
END ; final statement

TABLE 3. PIC MEMORY
CAPACITY

Device Program Data Registers Pins
Type size EEPROM

PIC16F627 1024 128 224 18
PIC16F628 2048 128 224 18
PIC16F83 512 64 36 18
PIC16C84 1024 64 36 18
PIC16F84 1024 64 68 18
PIC16F84A 1024 64 68 18
PIC16F870 2048 64 128 40
PIC16F871 2048 64 128 40
PIC16F872 2048 64 128 28
PIC16F873 4096 128 198 28
PIC16F874 4096 128 192 40
PIC16F876 8192 256 368 28
PIC16F877 8192 256 368 40

TABLE 2. PIC16F84 REGISTER
FILE MAP (courtesy Microchip)

The named file addresses are known
as the Special Function Registers.

8 – PIC Tutorial V2 Supplement Everyday Practical Electronics, April 2003

Strictly speaking, Files should be known
by their full name of File Registers. It
would be tedious, though, to keep using the
full name, and so the term “file” will be
used throughout the Tutorials to mean File
Register. (We also use the term “file” in
relation to disk files – the context should
make the meaning clear.)

For those of you who are familiar with
programming in BASIC, files can be
regarded as the equivalent of variables.
There is no direct BASIC equivalent of the
Working register, though in a sense it can
be regarded as a special variable.

The program commands reflect the file
and working destinations by the use of F
and W, respectively, in the code itself. For
example, in the code CLRF, the F indi-
cates that the value in a particular file
(memory data byte) is to be CLeaRed
(reset to zero) and the result is to be
retained in the file. On the other hand, in
the code MOVLW (to be met in Tutorial 4)
the W stands for Working (in this case
meaning that a Literal value is to be
MOVed into W). The use of both F and W
in a command (e.g. MOVWF) will become
evident in due course.

���

Having established what a file is, it is

necessary (and easy) to understand the
concept of a “bit”. You no doubt under-
stand it already, but, just to recap, a bit is
a single part of an electronic memory
which can be set to one of two states:
either to logic 1 (“on” – charged to a volt-
age which is usually the same as the posi-
tive power rail that supplies the circuit,
e.g. +5V); or to logic 0 (“off” – dis-
charged to a zero voltage). Logic 1 and
logic 0 are often referred to as high and
low, respectively.

A memory i.c. can have any number of
bits contained within it. A fixed number of
bits is known as a “byte”. There is a com-
mon misconception that a byte is only ever
comprised of eight bits. Historically, this is
not true, any fixed number of bits which
can be operated as a single unit is called a
byte. However, by current usage, a byte is
usually taken to be comprised of eight bits.

The status of the bits (high or low) with-
in a byte is expressed as a binary number
reading from left to right, in order of the bit
representing the highest value first (most
significant bit – MSB) down to the lowest
value (least significant bit – LSB). Thus
decimal 128 is expressed as binary
10000000, whereas binary 1 may be
expressed as 00000001 (the preceding
number of zeros may not always be includ-
ed – their presence being implied).

The bits of a byte are referred to by their
position within a byte, with position 0 at
the right, ascending as high as necessary
depending on the byte length. Thus an 8-bit
byte has its bits numbered as 7, 6, 5, 4, 3,
2, 1, 0. A 16-bit byte (probably referred to
as a word) would be numbered from 15 to
0. The use of 0 (zero) as a bit number is
essential to remember when programming
PICs.

Incidentally, terms MSB and LSB can
also be used to mean Most Significant Byte
and Least Significant Byte. The appropri-
ate meaning should be clear from the con-
text. There are also similar terms, NSB,
NMSB and NLSB, in which the N stands
for Next.

��
�
�
������
����

The concept of the terms “set” and “clear”
is important to understand. In program
terms, to “set” a bit means to force it high,
i.e. to logic 1; the term “clear” is used to
mean that a bit is forced low, i.e. to logic 0.

Note, however, that in textual terms (i.e.
in articles such as this) you are likely to
come across the mixed use of the word
“set”, in that you might be told to “set a bit
low”. In such cases, the implied meaning
should be obvious from the context. In this
example, “low” is the important word and
“force” or “make” could have been used
instead of “set”.

�������
���
�
��� ��
�

Command CLRF stands for CLeaR File
and is always followed by a single number
or name which indicates the file on which
the action is to be performed. The com-
mand instructs the PIC that all bits within
the stated file are to be cleared, i.e. it clears
the whole byte (to hold a value of zero).

The allied command CLRW (CLeaR
Working register) simply clears the contents
of the Working register and is used on its own
without a subsequent number or name. In
practice, this command may be seldom used,
the commands MOVLW 0 and RETLW 0
probably finding preference (these com-
mands are discussed in Tutorials 4 and 13,
respectively). Command CLRW has, in fact,
been dropped from some PIC families.

There are no direct opposites of CLRF
and CLRW which will set all bits high;
other techniques have to be used for this
action.

Using names for files instead of numbers
will be dealt with in Tutorial 3.

���������
�
PICs can have any individual bit of any

file byte acted upon directly. Each bit can

be set high or low by a single command,
and, as we shall show later, a single com-
mand will also determine the status of any
individual bit.

Command BSF translates as Bit Set File
and is always followed by two numbers or
names separated by a comma. The first
number or name is the file byte whose bit
is to be acted upon. The second number or
name is that representing the number of the
bit within the file byte (between 7 and 0,
reading from left to right).

As an example, the command BSF 3,5 in
Listing 2 instructs the PIC to set (make
high, force to logic 1!) bit 5 of file number
3; command BSF 6,7 means that bit 7 of
file number 6 is to be set.

�����������
Command BCF stands for Bit Clear File

and is the exact opposite of BSF. As an
example, the command BCF 3,5 in Listing
2 means that bit 5 of file 3 is to be cleared
(set low, made/forced to logic 0!).

��
������������

In the example of Listing 2, the files

whose bits have been set or cleared are
those which control Port B. In terms of
writing to or reading from Port A and Port
B, the two ports are treated as any other file
destination. However, Port A and Port B
are different to other files in that they are
for communication with the outside world.

There are, in fact, two file registers asso-
ciated with each port that are accessible to
the programmer. One is used to set the
direction in which the bits are to act, i.e. as
inputs or outputs (it is also known as the
Data Direction Register – DDR), and the
other deals with the data written to (for out-
put to the world) or read from (input from
the world). Each bit of the port direction
registers can be individually set or cleared
so that the same port may be used simulta-
neously for data input and output via
different bits.

TABLE 4: STATUS REGISTER (Courtesy MICROCHIP)

Everyday Practical Electronics, April 2003 PIC Tutorial V2 Supplement – 9

The file which controls the direction in
which Port B pins respond is named in the
PIC datasheets as TRISB. It is one of the
named “Special Function Register” files
(see Table 2) and is contained in memory
byte address H’86’ (we won’t translate
hexadecimal numbers into decimal since
the latter are irrelevant in the context of file
addresses).

The file which holds Port B’s data,
whether as input or output, is at memory
byte address H’06’ and, helpfully, is known
in the PIC datasheet as PORTB.

A minor inconvenience exists in the
PIC16F84, and the other PIC families
referred to earlier, in that addresses H’80’
to H’8B’ can only be accessed by changing
the value in another file, the STATUS file
(Table 4). This file is held jointly at byte
addresses H’03’ and H’83’. A single bit
within STATUS is used to direct the pro-
gram to numbers either below H’80’
(known as Bank 0 or Page 0 addresses) or
above H’7F’ (known as Bank 1 or Page 1
addresses); this bit is number 5. (Note that
some PICs have more than two Banks.)

When STATUS bit 5 is set (logic 1), it
effectively adds H’80’ to the memory byte
address being accessed. When the bit is
clear (logic 0), addresses below H’80’ are
accessed. Thus, if you instruct that file 6
(H’06’) is to be accessed when STATUS
bit 5 is low, the file actually at address 6
will be accessed. Conversely, if you
instruct that file 6 is the subject when STA-
TUS bit 5 is high, the file at address H’86’
will be accessed.

In the PIC16F84, only files numbered
H’00’ to H’4F’ and H’80’ to H’8B’ are
available for use by the programmer. Note
that files H’07’ and H’87’ have no function.

It may appear from the Registers File
Map in Table 2 that addresses H’8C’ to
H’CF’ might also be available. Writing to
these addresses, though, simply accesses
those between H’0C’ and H’4F’. (In some
PICS, including the PIC16F87x and
PIC16F62x families, additional memory is
available at the higher Bank addresses –
see Using the PIC16F87x Additional
Memory, EPE June ’02, on the CD-ROM.)

��
�����"��������

We can now examine each command of
Listing 2 in turn and describe its purpose.
When the PIC is first switched on, the
STATUS file is set to a default value with
its bit 5 low. All file addresses are thus
treated as being below H’80’.

We have established that address 6 is
that which holds the data for Port B. The
first command, CLRF 6, thus clears the
data which is held in Port B as a value
available to be output, i.e. Port B’s output
register is instructed to hold a value of
zero.

The purpose of the program in Listing 2
is to output data to the eight l.e.d.s on Port
B, and it has already been said that the
default value of Port B’s direction register
(at H’86’) is for all bits to be set for input
(all bits are high – 11111111).
Consequently we must now set them all as
outputs, i.e. each to logic 0, thus 00000000.
To do this, first the STATUS register at
address 3 must have its bit 5 set high to
point to addresses of H’80’ and above;
hence the command BSF 3,5.

Now we configure all of Port B for out-
put mode with the command CLRF 6. Yes,

it’s the same command as cleared Port B’s
data, but because STATUS bit 5 is high, the
value of 6 (H’06’) has H’80’ added to it, so
the address actually accessed is that at
H’86’.

The commands which output data to the
l.e.d.s are all concerned with Port B’s data
file at “real” address 6, so the addition of
H’80’ is no longer needed. The next com-
mand, BCF 3,5, thus clears bit 5 of the
STATUS register at address 3. All remain-
ing commands in Listing 2 can now, in
turn, set high each data bit of Port B at
address 6: BSF 6,0, BSF 6,1, etc., so turn-
ing on the l.e.d.s in sequence from LD0 to
LD7. Simple!

���
��
��"

2.1. Using your text editor and a copy of
TK3TUT2.ASM (renamed to any title of
your choosing, but still with the .ASM
extension), experiment with the eight
commands relating to file 6, using different
values (between 0 and 7) for the number
following the comma. Do not change the
number before the comma. Also experi-
ment with changing BSF to BCF.

2.2. Rewrite the program in Listing 2 so
that it performs its actions on Port A
instead of Port B. The equivalent data and
direction addresses for Port A are 5 (H’05’)
and H’85’, respectively. Note that Port A

��
�����!�#��
��
����	!���!

; TK3TUT3.ASM
; using names to ease writing of Listing 2

STATUS EQU 3 ; name program location 3 as STATUS
PORTB EQU 6 ; name program location 6 as PORTB

ORG 0 ; Reset Vector address
GOTO 5 ; go to PIC address location 5
ORG 4 ; Interrupt Vector address
GOTO 5 ; go to PIC address location 5
ORG 5 ; Start of Program Memory

CLRF PORTB ; clear Port B data pins
BSF STATUS,5 ; set for Bank 1
CLRF PORTB ; set all Port B as output
BCF STATUS,5 ; set for Bank 0

LOOPIT BSF PORTB,0 ; set Port B pin 0 to logic 1
BSF PORTB,1 ; set Port B pin 1 to logic 1
BSF PORTB,2 ; set Port B pin 2 to logic 1
BSF PORTB,3 ; set Port B pin 3 to logic 1
BSF PORTB,4 ; set Port B pin 4 to logic 1
BSF PORTB,5 ; set Port B pin 5 to logic 1
BSF PORTB,6 ; set Port B pin 6 to logic 1
BSF PORTB,7 ; set Port B pin 7 to logic 1
CLRF PORTB ; clear all PORTB pins
GOTO LOOPIT ; go to address LOOPIT
END ; final statement

��
�����!��$�	!���!���
������%

List Prog Prog Code Source code
count count count value
deci deci hex hex

0004 0 0000 STATUS EQU 3
0005 0 0000 PORTB EQU 6
0006 0 0000
0007 0 0000 ORG 0
0008 0 0000 28 05 GOTO 5
0009 1 0001 ORG 4
0010 4 0004 28 05 GOTO 5
0011 5 0005 ORG 5
0012 5 0005
0013 5 0005 01 86 CLRF PORTB
0014 6 0006 16 83 BSF STATUS,5
0015 7 0007 01 86 CLRF PORTB
0016 8 0008 12 83 BCF STATUS,5
0017 9 0009
0018 9 0009 14 06 LOOPIT BSF PORTB,0
0019 10 000A 14 86 BSF PORTB,1
0020 11 000B 15 06 BSF PORTB,2
0021 12 000C 15 86 BSF PORTB,3
0022 13 000D 16 06 BSF PORTB,4
0023 14 000E 16 86 BSF PORTB,5
0024 15 000F 17 06 BSF PORTB,6
0025 16 0010 17 86 BSF PORTB,7
0026 17 0011 01 86 CLRF PORTB
0027 18 0012 28 09 GOTO LOOPIT

The full listing also shows binary values and comment statements.

10 – PIC Tutorial V2 Supplement Everyday Practical Electronics, April 2003

only has five pins, not eight. What differ-
ence, if any, does this make to the pro-
gram? You need to disconnect the wires
from Port B that go to l.e.d.s LD0 to LD4,
and then connect Port A pins to these l.e.d.s
in correct numerical order.

You will notice that Port A pin RA4 does
not appear to turn on its l.e.d. This is
because the pin has an “open-collector”
output which needs to be biased high,
before it can be used to toggle between
Logic 0 and Logic 1. An example of this is
shown in Tutorial 12.

Reinstate the Port B connections to all
l.e.d.s when you have finished with
Exercise 2.2.

����
����!
CONCEPTS EXAMINED

Names in place of numbers
Labels
Case sensitivity
A repetitive loop
Instruction EQU

CONNECTIONS NEEDED
All Port B to all l.e.d.s.
Capacitor C7 as 1�F
Preset VR1 set to maximum resistance

(fully anti-clockwise)

In the previous section dealing with
Listing 2, we were using numbers to indi-
cate which file was being referred to.
That’s fine if there are only a few files
whose address numbers can be easily
remembered. As we progress with examin-
ing the PIC commands and example list-
ings, though, we shall be using more and
more files. If we continue to refer to them
numerically, we’re going to get lost!
(What’s file H’0C’ for? Is the data sup-
posed to go to file H’1C’ or file H’1E’?)

Human memories with numbers are
notoriously bad! But we are (usually)
much better with names. This fact was long
ago recognised by program writers and
many types of software allow the use of
names in place of numbers. Let’s examine
how names can be applied to the numbered
files in Listing 2. Have a look at Listing 3.

Any number written into a listing can be
represented by a name. It can be any name
you like as long as you think you’ll know
in time to come what is meant by that name
(but some assembly programs impose a
limit on name lengths, although TK3 does
not). There are also some names which it is
better to allocate according to their func-
tion, especially those functions that already
have names provided in the PIC datasheets,
such names as STATUS and PORTB, for
example.

With some programmers (but not TK3),
the names are “case-sensitive”. In other
words, once you have equated a name with
a number, further use of the name must be
in exactly the same style as the original
with regard to the use of upper and lower
case letters. For example, names PORTB
and portb should not be used interchange-
ably. It is recommended, though, that you
do not use different upper and lower case
styles of the same word to mean different
things.

However, the commands themselves (as
opposed to the names) may be in upper or
lower case without (usually) causing
problems. For example, for clarity on these

published pages, the commands are shown
in upper case. In the actual full ASM list-
ings, though, the same commands are prin-
cipally in lower case – the TK3 assembly
program recognises both styles.

�&�����������

In Listing 3, three names have appeared:

the aforementioned “aliases” STATUS and
PORTB, plus LOOPIT. We’ll keep LOOP-
IT a mystery for the moment (but we’re
sure you know what it’s for). All “alias”
name allocations must appear at the head
of the program listing, in the initialisation
block.

Then the format for allocating a name
to a number is to state the name at the left
of a program line followed by at least one
space, although you may have more than
one space if you prefer, to keep things
looking neat and tabulated. Most assem-
bly programs allow the use of the Tab key
to keep columns tabulated, which makes
typing easier than keying-in lots of
spaces.

Now the statement EQU is made, fol-
lowed by a space and the number you wish
to name. In the case of the first line,
STATUS is the name to be given to the
numeral 3 (which, you will remember, is
the file address number for the STATUS
register). Hence, the statement:

STATUS EQU 3

This simply tells the assembler program
that when it assembles the listing into code,
each time it comes across the name
STATUS, it is to replace it in the code by
the value of decimal 3.

The second line similarly allocates the
name PORTB to file address 6:

PORTB EQU 6

Compare Listing 2 and Listing 3; you
will see how the program has been
rewritten using the names in place of file
numbers.

It is permissible to use other numerical
formats, such as binary and hexadecimal,
in EQU number defining.

��
��$'�
�%�����

When ASM source code files are assem-

bled, a List file (.LST) is generated as well
as the HEX file. A list file allows examina-
tion of the original ASM source code and
the actual values that the assembly pro-
gram generates in respect of that code.

Some assemblers generate separate list
files for each source code file, using the
same basic file name, but giving an exten-
sion of .LST. TK3, though, uses a common
file name that is used for all list files
(TK3ASM.LST).

Click on the LIST button in TK3’s
Assembly zone to open the LST file creat-
ed when TK3TUT2.ASM was assembled,
and print it to paper. Then assemble
TK3TUT3.ASM and print out its LST file.
A section of it is repeated in Listing 3A.

Examining both printouts you will see
that the Program Count and Code Value
hex numbers are the same in both listings,
except for the last two (new) commands of
TK3TUT3.

The LST files also include the program-
mer’s notes at the right. They have been
omitted from Listing 3A to conserve space.

The lefthand column (List count deci)
holds the text line numbers as encountered
in the text file listing (ASM) and are in
decimal. They serve no programming
purpose and are simply there for your
information.

The second and third columns show the
actual address location number (in decimal
and hex respectively) within the PIC at
which the command will be placed.

Command ORG 0 causes its associated
GOTO 5 statement to be coded at location
0, similarly with ORG 4 and its GOTO 5
statement for location 4.

Note how columns four and five, which
hold the 2-byte hex code and the equivalent
binary (14-bit) value (not shown in Listing
3A), are only used if a command is
encountered. For example, command
GOTO 5 generates the code 28 05
(H’2805’), and command CLRF PORTB
generates the code 01 86 (H’0186’).

The .HEX file holds the code values in
hexadecimal. The 14-bit binary value is
that which is converted from the hex value
and sent to the PIC as serial data.

�	!���!���
���
(
Now load the code for TK3TUT3.HEX

into your PIC. It will be seen to start off in
the same way as TK3TUT2. Now, though,
when it gets to the end of the code, the
l.e.d.s will all go out and the sequence will
repeat, indefinitely! You will find that a
fully-clockwise setting of VR1 becomes
preferable, to increase the display rate.

The program difference now is that there
are two extra commands and when com-
mand BSF PORTB,7 has been performed,
Port B is cleared and the program follows
the command GOTO LOOPIT. LOOPIT is
the name given to the address at which the
command BSF PORTB,0 has been placed.
During assembly that address number has
been noted and each time the assembler
encounters a command reference to the
address named LOOPIT, it substitutes the
number for that address. There is just one
reference in this program, but other pro-
grams may have many such references.

Names, when given to program listing
addresses, as with LOOPIT here, are com-
monly known as “labels”. Referring to the
.LST listing for TK3TUT3, the numbered
line 0018 reads:

0018 9 0009 14 06 LOOPIT BSF PORTB,0

Note the value 9 in column 3. Now look
at line 0027, which reads:

0027 18 0012 28 09 GOTO LOOPIT

Now note the 09 in column 5. The two
values are equal and intentional. The
address for which LOOPIT is the reference
name (label) is at location 9; the code 28 09
contains the instruction to GOTO (jump
to), plus the address number to which it is
to jump.

In other instances, the addresses may be
much greater than the one illustrated here,
and the two values will differ accordingly,
but the point is that the name LOOPIT is
replaced by an address value during assem-
bly and as such is treated by the Assembler
in the same way as were STATUS and
PORTB.

This fact has another important signifi-
cance: when a number has a name

Everyday Practical Electronics, April 2003 PIC Tutorial V2 Supplement – 11

allocated to it, each time the assembly
program encounters that name it substi-
tutes the appropriate number. Names can
be given to addresses (as just illustrated),
to register files (as with PORTB), and
even bit numbers (Z to represent the Zero
flag bit of the STATUS register, as shown
later).

We shall also show examples of names
being used as pointers to addresses when
the address required may depend on a par-
ticular value established as a result of cal-
culation, i.e. in the case of Indirect
Addressing, which will be examined in
Tutorial 16.

It is worth noting that TK3 allows labels
to be suffixed by a colon (:), e.g. LOOP:,
which makes labelled routines easier to
find using a text editor’s Search or Find
facility in a long program that has many
calls to a particular label. Microchip’s
assembly programs do not permit this.

TABLE 5. SPECIAL FUNCTION
REGISTERS

Register Address Bank Tutorial
EEADR 09 0 25
EECOCN1 08 1 25
EECON2 09 1 25
EEDATA 08 0 25
FSR 04 0·1 16
INDF 00 0·1 16
INTCON 0B 0·1 18
OPTION 01 1 18
PCL 02 0·1 4
PCLATH 0A 0·1 14
PORTA 05 0 4
PORTB 06 0 4
STATUS 03 0·1 2
TMR0 01 0 18
TRISA 05 1 4
TRISB 06 1 4

���
��
��!
3.1. Do the same sort of program modi-

fications that you did with Exercise 2,
examining the results achieved. Also try
changing the position of the LOOPIT
address in the lefthand column, putting it
alongside BSF PORTB,2 for example.

3.2. The command GOTO LOOPIT can
also be put elsewhere; try putting it
between BSF PORTB,4 and BSF
PORTB,5 and see what the result is.

There is an easy way of moving it in this
instance without actually doing so: put a
semicolon (;) in front of the three lines fol-
lowing BSF PORTB,4. The Assembler will
then treat these lines as comments and
ignore them. The use of a semicolon is a
handy way to temporarily omit commands
when debugging programs (locating
errors).

3.3. What happens if a semicolon is put
in front of any of the three CLRF PORTB
commands?

����
�����
CONCEPTS EXAMINED

Naming numbers
Bit naming
Bit codes C, F, W
Bit testing
Carry flag
Conditional loop
Instructions BANK0 and BANK1
Instruction #DEFINE
Pin protection

Command MOVLW
Command MOVWF
Command RLF
Command RRF
Command BTFSS
Command BTFSC
Command PCL
Program counter
Register PORTA
Register PORTB
Register TRISA
Register TRISB
Register PCL
STATUS register bit 0

CONNECTIONS NEEDED
All Port B to all l.e.d.s.
Capacitor C7 as 1�F
Preset VR1 set to minimum resistance

(fully clockwise)

��
�
������

)��������������	

One concept that you are likely to see in
PIC software is that of defining a frequent-
ly used command format as a single name.
Each time the Assembler encounters that
name during assembly, the defined com-
mand will be substituted in the coding.
Two such definitions appear in Listing 4:

#DEFINE BANK0 BCF STATUS,5
#DEFINE BANK1 BSF STATUS,5

The command BANK0 is then used each
time the programmer would otherwise key

in BCF STATUS,5. Likewise with
BANK1. It is not only shorter, but conveys
another concept more clearly than would
direct manipulation of STATUS bit 5, that
of Banks (or Pages), which were referred
to in passing earlier. We have shown that
STATUS bit 5 switches between addresses
H’00’ to H’4F’ and H’80’ to H’8B’. In fact,
the latter extends to H’CF’, but addresses
greater than H’8B’ are not available to the
programmer. Writing to them simply wraps
them back to an address H’80’ bytes
earlier.

We have so far equated two file names
and address values, STATUS as 5 and
PORTB as 6. You will have seen that they
actually represent three functions, the
STATUS function which is accessed joint-
ly at locations H’03’ and H’83’, and two
functions for PORTB accessed at H’06’
and H’86’. With the PIC16F84 all Special
File Registers are held between H’00’ to
H’0B’ and H’80’ to H’8B’ (see Tables 2
and 5).

It makes for an easy shorthand way of
defining which group is which by giving
them names. As Microchip refer to these
groups as being in Bank 0 and Bank 1,
these are convenient name types to use.
This, then, is why the terms BANK0 and
BANK1 have been defined as above: it is
simply an easy to remember convenience.
BANK0 holds the H’00’ to H’0B’ group,
and BANK1 holds the H’80’ to H’8B’
group. Note that you may sometimes come
across the term Page instead of Bank to
represent the same concept.

��
�������#��
��
����	!����

; TK3TUT4.ASM
; using aliases, bit names and conditional loops

#DEFINE BANK0 BCF STATUS,5
#DEFINE BANK1 BSF STATUS,5

STATUS EQU 3 ; STATUS register
TRISA EQU 5 ; Port A direction register
PORTA EQU 5 ; Port A data register
TRISB EQU 6 ; Port B direction register
PORTB EQU 6 ; Port B data register

W EQU 0 ; Working register flag
F EQU 1 ; File register flag
C EQU 0 ; Carry flag

ORG 0 ; Reset Vector address
GOTO 5 ; go to PIC address location 5
ORG 4 ; Interrupt Vector address
GOTO 5 ; go to PIC address location 5
ORG 5 ; Start of Program Memory

CLRF PORTA ; clear Port A data register
CLRF PORTB ; clear Port B data register
BANK1 ; set for BANK1
CLRF TRISA ; set all Port A as output (clear direction reg)
CLRF TRISB ; set all Port B as output (clear direction reg)
BANK0 ; set for BANK0

LOOP1 MOVLW 1 ; load value of 1 into Working register
MOVWF PORTB ; load this value as data into Port B
BCF STATUS,C ; clear Carry flag

LOOP2 RLF PORTB,F ; rotate value of PORTB left by 1 logical place
BTFSS STATUS,C ; check if the Carry flag (bit 0) of the STATUS
GOTO LOOP2 ; command is actioned only if PORTB is not yet 0

; the program jumping back to address LOOP2
GOTO LOOP1 ; command is actioned only when PORTB now = 0
END

12 – PIC Tutorial V2 Supplement Everyday Practical Electronics, April 2003

��������&������
In Listing 4, following the three defini-

tions we see STATUS, PORTA and
PORTB being nominated (EQUated) as in
Listing 3, representing register addresses 3,
5 and 6 respectively. The names TRISA
and TRISB have crept in, though, and they
also relate to register addresses 5 and 6
respectively. Why two names for the same
number? It is done for the convenient rea-
son that we know address 6, for example,
relates to registers which appear in both
BANK0 and BANK1, but which have dif-
ferent functions, Port B’s data and direc-
tion registers, respectively.

It saves confusion, therefore, to have a
different name for each, even though their
address numerals are the same. The name
TRISB is given to Port B’s direction regis-
ter since this is the name given to that func-
tion in PIC datasheets. The name PORTB
now simply refers to Port B’s data register.
Exactly the same convention is applied to
Port A, using PORTA and TRISA as the
names in relation to location 5.

Incidentally, as mentioned earlier, there is
a command TRIS available as part of the
command set of some early PICs. Microchip
recommend that it should not be used since
it has been deleted from the PIC16F84 and
later chips. The same applies to the com-
mand OPTION. Neither of these commands
will be discussed here. You will see the use
of TRISA, TRISB and OPTION_REG in
this Tutorial, but the terms are used as
Register file names, not as commands.

Where Special Function registers have
had their functions equated to a name that
is similar, henceforth the new name will be
used. For example, Port B will be referred
to as PORTB, Port A as PORTA and Status
as STATUS. Additionally, in order to avoid
repetition of comments made in earlier list-
ings, from now on listing comments will
not always be shown here for situations
that have previously been discussed. The
full listings, however, show comments
where appropriate.

�����
��������
It was said earlier that unused PIC pins

should never be left as “floating” inputs.
The easiest way to ensure that they are not
is to set them as outputs and to set their
output value to 0. This is why PORTA and
TRISA conditions have been specified,
even though PORTA is not actually used in
program TK3TUT4.

��������

All the numerals to which names have

been allocated so far have been related to
file (register) byte addresses. It is equally
possible to allocate names to particular bits
in a file byte. This is especially useful
when individual bits of particular files per-
form specific functions. Three examples
are shown in Listing 4:

C EQU 0
W EQU 0
F EQU 1

��������
��������
We have already said that data can be

routed either to files or retained in the
Working register. A single bit code, either 0
or 1, determines which destination. This bit
value statement is required following the
comma used with some commands.

For example, take the two similar com-
mands RLF PORTB,0 and RLF PORTB,1,
the command RLF (which is discussed in a
moment) tells the PIC that the value within
the file then stated (in this case the file is
PORTB) is to be rotated left (multiplied by
two). The result of this rotation can either
be put back into PORTB, using the 1 suf-
fix, or held in the Working register for fur-
ther use, using the 0 suffix. If the Working
register is chosen, the value in PORTB
remains as it was.

Again for easy human understanding, it
is more convenient to give a name to the
different conditions than having to remem-
ber numbers. So the file destination 1 is
called F for File, and the Working destina-
tion 0 is called W for Working. All very
logical and clear! The two example com-
mands thus become RLF PORTB,W and
RLF PORTB,F.

��

��������

One bit of STATUS (see Table 4), bit 0,
is the bit which indicates whether a Carry or
a Borrow has occurred during some com-
mands. (It is, incidentally, common to refer
to such bits as being “flags”: the flag is then
said to be set or cleared by any action which
affects it.) The Carry flag is frequently
required to be read in most programs and it
is convenient to also give it a name, in this
case C, hence the setting-up statement:

C EQU 0

The bit can be manipulated or tested by
commands such as BCF STATUS,C or
BTFSS STATUS,C (discussion of BTFSS
comes in a jiffy or two).

Before going any further with the con-
tents of Listing 4, load its code into the PIC
(TK3TUT4.HEX). What you will see is
that the eight individual l.e.d.s on PORTB
are being turned on at the same time the
preceding one is turned off. The movement
will appear to be going from right to left,
from bit 0 to bit 7 (LD0 to LD7), and
restarting at bit 0.

There are several ways of doing this (and
many reasons why you should need to).
Two programming techniques are discussed
here, the one in Listing 4, and then a much
shorter one later in Listing 5. The one in
Listing 4 demonstrates the use of the com-
mands MOVLW, MOVWF, RLF, BTFSS,
and how two loops can be “nested” and
made dependent upon each other.

�������
�
��
���

�

Many of you will be familiar with the
electronic concept of shift register chips.
Data can be loaded into the register either
serially (bit entry) or in parallel (byte
entry). The data can be shifted to the “left”
or “right” in the chip, in response to a clock
signal. The shifted data can then be made
available either serially as bits, or in paral-
lel as a byte. When data is shifted left and
read as a byte (parallel output), each shift
has the effect of multiplying the data by
two. Shifting to the right divides it by two.

Take the 8-bit binary code 00000100
(decimal 4), for example. If this is shifted
left by one place, the result is 00001000
(decimal 8). If the code had been shifted
right by one place, the result would be
00000010 (decimal 2).

Most files within a PIC are capable of
having their data shifted (rotated) to the left
or to the right (although doing so on the
Special Function Registers may sometimes
produce unpredictable results). The two
commands are RLF and RRF (Rotate Left
File and Rotate Right File).

Both commands have to be followed by
the file which is to have its data rotated,
then a comma and then the destination,
either F or W. For example: RLF PORTB,F
or RLF PORTB,W. If the W destination is
chosen, the original contents of the file
remain intact (the result going into W); they
are only changed if the F suffix is used,
which causes the result to be placed back
into the file, over-writing its previous value.

There are two problems associated with
rotating a file’s contents left or right. For
the first, consider the situation when a file
(for the sake of example, call it PORTB)
contains a value such as 11010111 (deci-
mal 215); there are many numbers that
could illustrate the point about to be made.
Suppose the rotate left command RLF
PORTB,F is given, all bits are rotated left
by one place. The value retained in PORTB
becomes 10101110 (decimal 174) which is
definitely not 2 × 215; the original lefthand
bit has vanished from this 8-bit byte – a
9-bit byte would be needed to show the
correct answer.

�����������

�
Alternatively, suppose the rotate right

command RRF PORTB,F is given, all bits
are rotated right by one place. The value
retained in PORTB becomes 01101011
(decimal 107), which is definitely not
215/2; the original right-hand bit has van-
ished from this 8-bit byte.

In some cases, of course, the intention of
rotating left or right may have nothing to
do with multiplying a value by 2. It may be
that we simply want to change the position
of the bits for another purpose, such as
changing the commands sent to the outside
world to turn equipment on or off. In this
case, the arithmetic accuracy of the rotate
result would be immaterial.

The other problem (although it can be
used beneficially) is that bits rotated out
from either end of the byte are rotated into
the Carry bit of STATUS. Simultaneously,
the previous value held in the Carry bit is
rotated into the byte at the other end.

Suppose that the Carry bit is initially
zero. In the first RLF example above, the
original value of 11010111 would be rotat-
ed left and the result would be correct as
shown (10101110) because the 0 has come
in to the right from the Carry bit. However,
the last lefthand bit of the original value
(which is a 1) would now be in the Carry
bit.

Suppose then that another rotate left is
made. The bits within PORTB would be
rotated left but, at the same time, the Carry
bit from the previous rotation would now
be rotated into PORTB from the right. The
value held in PORTB thus becomes
01011101 (decimal 93), and again the
Carry bit now holds the 1 from PORTB bit
7. Therefore, the next rotation will result in
an answer of 10111011 (decimal 187).

To avoid a set Carry bit (which retains
the status last acquired anywhere in the
program) being rotated automatically into
a file byte from the other end, the Carry bit
can be cleared by the command BCF

Everyday Practical Electronics, April 2003 PIC Tutorial V2 Supplement – 13

STATUS,C prior to each rotate command,
unless, of course you want a set Carry bit
rotated into a byte.

Referring again to the display you see on
the l.e.d.s at the moment, controlled by
TK3TUT4, the Carry bit clearing tech-
nique is being used immediately prior to
the RLF command. We shall show what
happens if the Carry is not cleared when
TK3TUT5 is viewed later.

�������������
In Listing 4 is the command MOVLW 1.

The MOVLW command (MOVe Literal
value into W) is the command which allows
literal values (numbers) contained within
the program itself to be moved (copied) into
the Working register for further manipula-
tion. The range of values is from 0 to 255,
i.e. an 8-bit byte. Command MOVLW 1
instructs that the value of 1 is to be moved
into W. Literal values may be expressed in
decimal, hexadecimal or binary, e.g.:

MOVLW 73 (decimal)
MOVLW H’49’ (hexadecimal)
MOVLW B’01001001’ (binary)

Literals may also be the address values
of other files whose names have been spec-
ified at the head of the program, or they
may be the values assigned to be represent-
ed by other words or letters. The following
are all legal commands:

MOVLW STATUS
MOVLW PORTB
MOVLW W
MOVLW LOOP1

Respectively, the commands would
move into W the address value of STATUS
(which we have specified as 3), the address
value of PORTB (6), the value assigned to
be represented by W (0), the address with-
in the program at which the command line
prefaced by label LOOP1 resides (a value
known only to the program – unless you
examine the LST file).

An important point about any of the
Move commands, such as MOVLW,
MOVWF and MOVF is that the original
value (source value) itself remains where it
is and is unchanged. The value is simply
“copied” into the destination specified.
Having moved a literal value into W it can
then be immediately moved into a speci-
fied file destination, or it can be used as
part of a further manipulation.

�������������
Following the MOVLW 1 command in

Listing 4 is the command MOVWF
PORTB. Command MOVWF (MOVe W
into File) simply copies the contents of the
W register into the file specified, in this
case PORTB. Apart from the destination
statement, no commas or other statements
are needed (or allowed) with this com-
mand. The MOVWF command is the only
way in which full bytes of data can be
copied from W into other destinations. As
used in Listing 4, it is the value of 1 which
is copied.

�����������

Another command we are introducing in

Listing 4 is BTFSS, Bit Test File Skip if
Set. What BTFSS does is to examine the
status of the file bit specified in the

remainder of the command (bit C of
STATUS in this case: BTFSS STATUS,C).

The word Set now becomes the impor-
tant one. The PIC is being asked to test if
the bit specified is Set (i.e. is it logic 1?).
There can only be one of two answers,
either “yes” or “no”. In programming (and
digital electronics too) if the answer is
“yes”, then the answer is said to be “true”.
If the answer is “no”, then the answer is
said to be “false” (not true).

Now we come to a situation which some
find difficult to grasp until they understand
“what” happens when the validity of the
question has been established. It’s simple,
though, once the facts are known!

The convention is that if a situation is
“true” then it can be represented by logic 1,
Conversely, if the situation is “false” it can be
represented by logic 0. Logic 1 and logic 0
are, of course, the two states in which a bina-
ry bit can be. Hold this idea in your mind for
a moment and consider the next fact.

We have shown that programs are stored
as instructions in consecutive memory
bytes. It has also been shown that these
bytes are numbered from zero upwards
(Listing 3A). Microcontrollers such as
PICs keep track of which program byte
number is currently being processed, and
there is a counter which holds this infor-
mation – the Program Counter (PCL, as it
is named for the PIC, Program Counter
Low). Unless told otherwise, when one
instruction has been performed, the pro-
gram counter is automatically incremented
(a value of 1 added to it) and the next con-
secutive command is performed.

�������������
�

The program address number held by

the PCL can be changed, either when the
instruction is one such as GOTO or CALL,
or by the user telling it to add another liter-
al value to itself. The next instruction per-
formed is that at the address pointed to by
the new value. It will be seen, then, that if
the value of 0 is added to the PCL, the next
instruction is simply the next one on. If,
however, the value of 1 is added to the
PCL, then the next consecutive instruction
is bypassed (skipped) and the one beyond it
is performed instead.

For example, if the program counter is at
52, then normally it will automatically add
one to itself and the next instruction will be
that at 53, and the one after that will be at
54, etc. If, somehow, we intervene and add
1 to the counter while it’s still 52, the
counter will become 53 but will still add its
own value of 1 to itself, making 54. The
program will thus jump straight from 52 to
54, omitting the instruction at 53. Should
the value of 0 be added, then, of course, the
program will go straight from 52 to 53.

Coming back to BTFSS, we know that
the answer will be either 0 or 1. When the
PIC performs the BTFSS command, the
answer is automatically added to the PCL.
Therefore, still assuming a PCL starting
value of 52, if the answer is true (1), the
PCL has 1 added to it and so the next
instruction performed is that at 54, as
above. If the answer is false (0), then zero
is added to PCL and so the instruction at 53
is performed, again as above.

Look again at Listing 4 and the command
BTFSS STATUS,C, i.e. we are checking if
bit C of STATUS is set (true). If if is true
that the bit is set, then the 1 of the truth

answer is added to PCL and so the com-
mand GOTO LOOP2 is bypassed and that
which says GOTO LOOP1 is performed. If
STATUS bit C is not set (false) then the pro-
gram simply takes GOTO LOOP2 as the
next command because the 0 of the false
answer is added to PCL. OK so far?

�����������
�
While this concept in still in your minds,

let’s look at the command which is the
opposite of BTFSS, namely BTFSC (Bit
Test File Skip if Clear). What this com-
mand does is to check if it is true that the
bit being tested is clear (0). If it is true that
the bit is clear, then the answer is 1. If it is
false that the bit is clear (that the bit is not
0, but 1), then the answer is 0.

Let’s see what happens in Listing 4 if we
replace BTFSS by BTFSC. The command
BTFSC STATUS,C tests the C bit to find
out if it is true that it is clear. If it is true, 1
is added to PCL and command GOTO
LOOP1 is performed. If it is false that bit C
is clear, then 0 is added to PCL and so
GOTO LOOP2 is performed.

We have, perhaps, somewhat laboured
this explanation, but the concept of bit test-
ing and the resulting action is one which
causes some people problems, especially
when testing for a bit being clear.

Why, they ask, is it that the answer is 1 if
the tested bit is zero? Why does 1 equal 0? It
doesn’t, what you are looking for is the truth-
ful answer to the question posed. Think about
the question, think about the answer to it.

It is an important concept to grasp, and
there are other situations where it occurs:
when testing the Digit Carry and Zero flags
of the STATUS register (bits 1 and 2,
respectively). We shall encounter those sit-
uations in Tutorials 5 and 7.

��
������������
What you see the program of Listing 4

doing is the simple action of repeatedly
“moving” an l.e.d. from right to left. There
are only seven commands involved, yet, as
witnessed by the length of discussion so
far, there are several important commands
and their concepts to be fully understood.

Let’s relate those commands in simple
terms to what is happening in the program.

First, at label LOOP1 the value of 1 is
moved into W, this is then moved into
PORTB, setting its bit 0 to 1 and clearing
bits 1 to 7. As a result, the first l.e.d. at the
right is turned on (LD0) and the others
(LD1 to LD7) are turned off. In binary,
PORTB’s value is now 00000001.

Next, the Carry bit of STATUS is cleared
to prevent it from interfering with the
results of the rotate-left command that fol-
lows at label LOOP2 (as discussed earlier).
You will see that this command is RLF
PORTB,F. The F suffix means that the
result of the rotation is retained in PORTB,
and the contents of PORTB will have shift-
ed so that the second l.e.d. (LD1) has come
on because the 1 previously set by the
MOVWF command has shifted from
PORTB’s bit 0 to its bit 1. Since the Carry
bit was previously cleared, 0 is moved into
PORTB bit 0, turning off l.e.d. LD0. The
binary value has become 00000010.

Now the value of the Carry bit in
STATUS is checked to see if a 1 has been
shifted out from PORTB bit 7. In fact, it
cannot have occurred yet since it takes
eight shifts to bring the 1 from the right and

14 – PIC Tutorial V2 Supplement Everyday Practical Electronics, April 2003

into Carry. However, the PIC is not aware
of that fact, so the Carry bit has to be
checked following each shift left.

If the Carry bit is not yet set, the com-
mand GOTO LOOP2 is performed, the
program jumps back to that stated position
and the RLF command is again actioned.
As a result the third l.e.d. (LD2) will come
on and the second l.e.d. (LD1) will go out,
binary 00000100.

Eventually, after eight shifts, the 1 will
have shifted through all eight bits of
PORTB and into the Carry bit. At this
point, there will be no bits set in PORTB,
and so no l.e.d.s will be on. Now, on the
test for the Carry bit being set, the answer
will be true, command GOTO LOOP2 will
be bypassed and the command GOTO
LOOP1 will be performed, the program
jumping to that label. The whole sequence
then recommences by a 1 again being
loaded into PORTB bit 0. As written, the
program will repeat until the PIC is
switched off or the Reset switch is used.

���
��
���
4.1. What do you think will be the l.e.d.

display sequence if another value is loaded
into PORTB via the MOVLW command?
Try any multiple of 2; then try any value
that has more than one bit set, using the
binary format, e.g. B’01001100’.

4.2. Also see what happens if the com-
mand RRF PORTB,F is used instead of
RLF PORTB,F. What do you think will
happen if you replace PORTB,F by
PORTB,W? Then see what happens if
BTFSC is used instead of BTFSS? (It is a
common mistake to use the wrong com-
mand in this sort of situation.) Now swap
the two commands GOTO LOOP2 and
GOTO LOOP1.

4.3. Just out of interest, also try deleting
the command BCF STATUS,C (just put a
semicolon in front of it).

��
�����
�
�������
Load TK3TUT5.HEX – it will be seen

to be shifting the l.e.d. display to the left, as
occurred when TK3TUT4.ASM was first
run as TK3TUT4.HEX (before you started
changing it – although, hopefully, you
saved each variant under a different name).

You should notice that TK3TUT5 is run-
ning a bit faster than TK3TUT4 did. This is

because there are now fewer commands to
process for the same result. Simplicity of
code usually makes for faster processing
speeds (or, rather, the fewer commands that
need to be processed to perform a particular
function, will result in a faster processing
speed). Look at Listing 5 and you will see
how few commands there are in the loop,
just two. Let’s examine the program flow.

In the full listing everything up to the
statement BANK0 is the same as in
TK3TUT4. Then advantage is taken of
the fact that a set Carry bit will be shift-
ed into a file when it is rotated left or
right; the command BSF STATUS,C is
given before the loop, so setting the
Carry bit. Now when PORTB is rotated
left with the command RLF PORTB,F,
the Carry bit comes straight into PORTB
bit 0, turning on l.e.d. LD0.
Simultaneously, the Carry bit is cleared
(remember why?).

The next command is GOTO LOOP,
which the program does, again to rotate
PORTB, causing LD1 to come on and LD0
to go out. For eight rotations left, the Carry
bit remains clear, then on the ninth rotation
the original 1 that has traversed PORTB
will drop into the Carry bit, to be rotated
back into PORTB on the next rotation. And
so it goes on, indefinitely.

There are numerous situations in which
rotation occurs and when the setting of the
Carry bit is desirable. In this way, several
files can be coupled as a very long shift
register, e.g.:

BSF STATUS,C
RLF FILE1,F
RLF FILE2,F
etc. to
RLF FILE15,F

���
��
���
���������

4.4. What happens if you add another
RLF PORTB,F after the first? And if you
add a third RLF PORTB,F?

4.5. What happens if you substitute a W
for the F in one of the statements?

4.6. What happens if you amend the pro-
gram to work with PORTA (changing the
l.e.d. connections again) – why does the
sequence not repeat with the Carry bit
rotating back into PORTA? (What is differ-
ent about PORTA and PORTB?)

����
����*
CONCEPTS EXAMINED

STATUS bit 2
Zero flag
Bit code Z
Command MOVF

CONNECTIONS NEEDED
All Port B to all l.e.d.s.
Capacitor C7 as 1�F
Preset VR1 set to minimum resistance

(fully clockwise)

It is appropriate at this moment to intro-
duce a command allied to the Carry bit
tests, testing the Zero flag bit of the
STATUS register. This is bit 2 and in the
heading of program TK3TUT6, shown in
Listing 6, the letter Z has been equated
to it:

Z EQU 2

The two opposite commands for zero
testing are BTFSS STATUS,Z and BTFSC
STATUS,Z, identical to the Carry checking
commands except for the change of final
letter.

We also take the opportunity to formally
demonstrate command RRF (Rotate Right
File). It was described in Tutorial 4, but not
shown. You probably used it, though, when
experimenting with Exercise 4. Thirdly, the
command MOVF is introduced and
demonstrated. Run TK3TUT6.HEX and
refer to Listing 6.

The l.e.d. display controlled under
TK3TUT6 should be seen to be rotating
right, but otherwise the display repetition
should be as seen in TK3TUT4 and
TK3TUT5. The program opens up with the
necessary initialisation commands. The
command at LOOP1 is then seen to be
MOVLW B’10000000’ instead of the pre-
vious MOVLW 1. The set bit (1) is now at
the left of the byte, instead of at the right
(00000001).

This is moved into PORTB and the
Carry bit is cleared, both commands as in
Listing 4. At LOOP2, command RRF
PORTB,F now replaces RLF PORTB,F,
instructing the program to rotate to the
right, the 1 moving progressively from bit
7 to bit 0 and then into the Carry bit. Next
comes MOVF PORTB,F. Let’s examine it.

������������
Whereas MOVLW means moving a lit-

eral value into W, MOVF means MOVe
File value. The file (PORTB in this case) is
named following the command, but the
command itself does not say where the
value is to be moved (unlike MOVLW,
where W as the destination is included in
the command). The destination is stated by
adding a comma after the file name and
then adding either W or F, e.g.:

MOVF PORTB,W or
MOVF PORTB,F

Normally, the command would be used
with W, so that the contents of the file are
brought into W for presumed further use.
At first, then, the concept of using F as the
destination seems strange. Why move the
file value back into the file without the
value having undergone some sort of
manipulation?

The reason is that many commands auto-
matically affect various flags in the STATUS
register (see Tables 1 and 4), setting or clear-
ing them as appropriate. We have already

��
�����*�#��
��
��

�	!���*

; TK3TUT5.ASM
; Showing how Carry bit rotates into
register
#DEFINE BANK0 BCF STATUS,5
#DEFINE BANK1 BSF STATUS,5

STATUS EQU 3
TRISA EQU 5
PORTA EQU 5
TRISB EQU 6
PORTB DQU 6
W EQU 0
F EQU 1
C EQU 0

(ORG0 TO BANK0 as
previously)

BSF STATUS,C
LOOP RLF PORTB,F

GOTO LOOP
END

��
�������#��
��
��

�	!����

; TK3TUT6.ASM
; Using RRF and Z, Status bit 2
; Zero flag use, Command MOVF

(Definitions, through to
BANK0 as previously)

LOOP1 MOVLW B’10000000’
MOVWF PORTB
BCF STATUS,C

LOOP2 RRF PORTB,F
MOVF PORTB,F
BTFSS STATUS,Z
GOTO LOOP2
GOTO LOOP1
END

Everyday Practical Electronics, April 2003 PIC Tutorial V2 Supplement – 15

seen the Carry flag being affected by RLF
and RRF, but the Zero flag is not affected by
these two commands, so a different tech-
nique has to be used to check for zero.

When command MOVF is performed,
irrespective of the W or F destination, the
Zero flag is affected. It is set if the file
value is zero, cleared if the file value is
greater than zero. So, if we wish to know
whether or not the file value is zero, we can
use the MOVF command to affect the zero
flag, and do so without changing the file
value. It is also significant that the contents
of the W register are not affected when
using the F destination and can therefore
be used elsewhere if needed following the
result of the zero check.

That is what is happening in Listing 6,
moving F back into F to affect the Z flag,
which is about to be tested in the next com-
mand, BTFSS STATUS,Z. What is being
looked for is PORTB’s value becoming
zero after the 1 has exited from the right of
the file (from bit 0).

The logic of BTFSS STATUS,Z is the
same as that for the Carry flag. We are
looking for the truthful answer to a ques-
tion, in this case is it true (1) that the Zero
flag is set (1)? The answer will only be true
if the file value is zero (0) – another of
those concepts which some people may
find difficult to comprehend, a 1 being
used to mean the presence of 0.

If the file value is greater than zero,
i.e. does not equal 0, then the answer is
false (0) and so the Zero flag is cleared
(0). As with Carry testing, the result of
the Zero test (1 or 0) is added to the pro-
gram counter (PCL) and, depending on
the result, either GOTO LOOP2 (Z = 0)
or GOTO LOOP1 (Z = 1) is the com-
mand actioned. Consequently, LOOP2
commands will be cycled through eight
times before a jump is again made to
LOOP1.

���
��
��*
5.1. Prove that the Zero flag is affected

by the command MOVF PORTB,W as well
as MOVF PORTB,F (the proof is that the
rotation is the same as before).

5.2. What happens if the B’10000000’ of
command MOVLW B’10000000’ is
replaced by another number? Experiment
with different values.

����
�����
CONCEPTS EXAMINED

Command INCF
Command DECF
Command INCFSZ
Command DECFSZ
Counting upwards (incrementing)
Counting downwards (decrementing)
Use of a file as a counter

CONNECTIONS NEEDED
All Port B to all l.e.d.s.
Capacitor C7 as 1�F
Preset VR1 set to minimum resistance

(fully clockwise)

Load TK3TUT7.HEX and refer to
Listing 7.

This first thing to notice in Listing 7 is
that a new name, COUNT, has been added.
It has been equated in the full listing as:

COUNT EQU H’20’

This represents the first example of the
use of an “ordinary” file (as opposed to a
Special Register File). Such files are used
for temporarily storing data values while
the program is being run. In the PIC16F84
the file addresses that can be used for this
purpose are held in Bank 0 between H’0C’
and H’2F’.

In this program we could have actually
placed COUNT at location H’0C’ instead
of H’20’, but have used the later address
because that is the first location available in
many other PIC families, such as the
PIC16F87x and PIC16F62x.

There are now two new commands illus-
trated in TK3TUT7, INCFSZ (INCrement
File Skip if Zero) and DECFSZ
(DECrement File Skip if Zero). Two allied
commands, INCF (INCrement File) and
DECF (DECrement File), will also be
examined. The ability to increment (add
one to) a value, or decrement it (subtract
one from) has wide benefits in program-
ming. Two such instances are keeping track
of events through the use of counters, and
of changing the values of flag bits (when in
bit 0).

�������
�����
��� ����

The concept of commands INCF and
DECF are extremely easy to follow. The
first simply adds 1 to a file value, the other
simply deducts 1 from a file value. If the
file value is 255 (11111111 binary) when
INCF is called, the value rolls over to zero.
If the file value is zero when DECF is
called, the value rolls over to 255.
Whenever the result of INCF or DECF is
zero, the Zero flag is set, otherwise it is
cleared. Testing of the Zero flag can be per-
formed using BTFSS or BTFSC as dis-
cussed in Tutorial 5.

Taking PORTB again as the example
file, the command formats are INCF
PORTB,W or INCF PORTB,F, and DECF
PORTB,W or DECF PORTB,F. As previ-
ously discussed, the result of either com-
mand with a W suffix is that the new value
is held in W, the file itself remaining
unchanged. Conversely, the F suffix returns
the new value to the file stated. Both F and
W suffixes affect the Zero flag response.
(Table 1 shows the flags affected by any
command.)

�������
�����
+
��� ����
+

There are two commands which, respec-
tively, can replace the INCF and DECF
commands and which automatically test
the Zero flag, taking the appropriate route
depending on the truth of the answer.
These commands are INCFSZ and
DECFSZ, as defined at the start of this
section.

Using PORTB as the example file, the
command formats are INCFSZ PORTB,W
or INCFSZ PORTB,F and DECFSZ
PORTB,W or DECFSZ PORTB,F. If the
result of any of these commands is zero,
the Zero flag is automatically set, other-
wise the Zero flag is cleared. The status of
the flag determines the program routing in
the same way as if the flag had been tested
using BTFSS STATUS,Z or BTFSC
STATUS,Z.

���������������
����

Listing 7 illustrates two loops, one
counting up, the other down, alternating
between the two after each 256 steps.
INCFSZ is used in the first, DECFSZ in
the second. Before entering the loops, at
the label BEGIN the counter (COUNT) is
cleared. Then at LOOP1 the command
MOVF COUNT,W is given, followed by
MOVWF PORTB.

You should now recognise what the
actions do: they cause the value of COUNT
to be output to PORTB. Next, the com-
mand INCFSZ COUNT,F is given, adding
1 to the value of COUNT, simultaneously
checking if it has reached zero. An answer
of not-zero (Z = 0) causes command
GOTO LOOP1 to be performed.

Eventually, when COUNT has rolled over
to zero, after 256 increments, GOTO LOOP1
is skipped (bypassed) and LOOP2 is entered
where the command MOVF COUNT,W is
performed, followed by MOVWF PORTB.
These two lines are repeats of those at the
start of LOOP1. We shall see later how dupli-
cated lines of code can be avoided by using
the code once in a sub-routine, calling it from
any other routine that we wish.

Next, DECFSZ COUNT,F is performed,
decrementing COUNT from the entry
value of zero. COUNT thus rolls back to
255. Simultaneously, the command checks
if COUNT has reached zero. If it has not,
GOTO LOOP2 is performed. When
COUNT has decremented to zero, com-
mand GOTO LOOP1 is performed and the
cycle restarts, and so on.

It will be spotted that the use of a sepa-
rate counter is not actually required in this
example. We could increment or decrement
the value of PORTB directly, but we are
using COUNT instead to illustrate the use
of a separate file to store data. We might,
for example, want to increment COUNT,
and then go off and do some other process-
ing using COUNT’s value, outputting that
answer to PORTB instead.

���
��
���
6.1. If you were to use INCF and DECF

instead of INCFSZ and DECFSZ, what
would be the necessary changes to the
program?

6.2. What extra commands would be
needed to start each loop with a non-zero
value, while still counting until zero
occurs?

6.3. What would happen if you had erro-
neously used W instead of F in one or other
of the INC/DEC statements?

����������
In Part Two we show how to use

switches, generate sound, perform timing,
use 7-segment l.e.d. and alphanumeric
l.c.d. displays, and have more fun with our
command performance!

��
�����,�#��
��
��

�	!���,

BEGIN CLRF COUNT
LOOP1 MOVF COUNT,W

MOVWF PORTB
INCFSZ COUNT,F
GOTO LOOP1

LOOP2 MOVF COUNT,W
MOVWF PORTB
DECFSZ COUNT,F
GOTO LOOP2
GOTO LOOP1

16 – PIC Tutorial V2 Supplement Everyday Practical Electronics, April 2003

	This Revision
	Family Matters
	What is a PIC?
	Resources
	Tutorial Concepts
	PIC Varieties
	Sub-versions
	What You Need
	Additional Components
	Another Need
	First Things First
	Tutorial Sections
	Tutorial Exercises
	Preparation
	PIC Configuration
	Numerical Prefixes
	Tutorial 1
	Incapable?
	Tutorial 2
	File Registers
	Bits
	Terms Set and Clear
	Commands CLRF and CLRW
	Command BSF
	Command BCF
	Port File Numbers
	Listing 2 Commands
	Exercise 2
	Tutorial 3
	Equating Names
	List (.LST) Files
	TK3TUT3 Forever!
	Exercise 3
	Tutorial 4
	Instructions #Define and Bank
	Double Equating
	Pin Protection
	Bit Names
	Bit Names F and W
	Carry Flag C
	Commands RLF and RRF
	Right and Carry
	Command MOVLW
	Command MOVWF
	Command BTFSS
	Change of Address
	Command BTFSC
	Listing 4 Again
	Exercise 4
	A Simpler Rotation
	Exercise 4 Continued
	Tutorial 5
	Command MOVF
	Exercise 5
	Tutorial 6
	Commands INCF and DECF
	Commands INCFSZ and DECFSZ
	Counting Up and Down
	Exercise 6

