
Copyright © 2008, Wimborne Publishing Ltd
(Sequoia House, 398a Ringwood Road, Ferndown, Dorset BH22 9AU, UK)

and TechBites Interactive Inc.,
(PO Box 857, Madison, Alabama 35758, USA)

All rights reserved.

The materials and works contained within EPE Online — which are made available by

Wimborne Publishing Ltd and TechBites Interactive Inc — are copyrighted.

TechBites Interactive Inc and Wimborne Publishing Ltd have used their best efforts in preparing these materials and works. However, TechBites
Interactive Inc and Wimborne Publishing Ltd make no warranties of any kind, expressed or implied, with regard to the documentation or data
contained herein, and specifically disclaim, without limitation, any implied warranties of merchantability and fitness for a particular purpose.

Because of possible variances in the quality and condition of materials and workmanship used by readers, EPE Online, its publishers and agents
disclaim any responsibility for the safe and proper functioning of reader‐constructed projects based on or from information published in these
materials and works.

In no event shall TechBites Interactive Inc or Wimborne Publishing Ltd be responsible or liable for any loss of profit or any other commercial
damages, including but not limited to special, incidental, consequential, or any other damages in connection with or arising out of furnishing,
performance, or use of these materials and works.

READERS’ TECHNICAL ENQUIRIES

We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporation
or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or
projects that are more than five years’ old. We are not able to answer technical queries on the phone.

PROJECTS AND CIRCUITS

All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot, however,
guarantee it and we cannot accept legal responsibility for it. A number of projects and circuits published in EPE employ voltages
that can be lethal. You should not build, test, modify or renovate any item of mains‐powered equipment unless you fully
understand the safety aspects involved and you use an RCD adaptor.

COMPONENT SUPPLIES

We do not supply electronic components or kits for building the projects featured; these can be supplied by advertisers in our
publication Practical Everyday Electronics. Our web site is located at www.epemag.com

We advise readers to check that all parts are still available before commencing any project.

To order you copy for only $18.95 for 12 issues go to www.epemag.com

www.ep
em

ag
.co

m

www.epemag.com

������������������		����

����

������������

THE renowned game of Battleships is
normally played by two players with
pencil and paper. Its aim is for each

opponent to sink the other’s fleet before
their own fleet is sunk. The ships are nor-
mally marked on a 10 × 10 grid of squares
and each player calls out a grid reference
in turn, to which the other player responds
by saying whether it is a hit of a miss.

The variant of the game described here
provides the excitement of the sea chase
for just one player, who pits his wits
against a PIC microcontroller as the other
opponent. The position of the enemy (set
by the PIC program!) is unknown and
there are five merchant ships to be protect-
ed by the battleship. These six ship
positions are shown on a 5 × 7 light
emitting diode (l.e.d.) matrix display used
horizontally.

��������	
������
When the unit is first switched on, the

positions of the five merchant ships are
indicated by l.e.d.s that are lit continuous-
ly. The position of the battleship is repre-
sented by a flashing l.e.d., the “cursor”.
The enemy battleship is at the centre of the
display but its position is not indicated.

The flashing cursor can be moved to any
position on the display by means of four
push-switches that control movement in
the horizontal and vertical direction, one
position at a time. Each time the cursor is
moved, however, the unseen enemy ship
can also move one square in the horizontal
or vertical direction so that its current posi-
tion changes and remains unknown. (Note

that if the cursor is placed on the position
occupied by one of the merchant ships, the
l.e.d. will not flash).

When the player thinks the enemy is at
the position of the cursor, the “fire” button
may be pressed to try to sink the enemy. If
the enemy ship is not in this position, the
cursor will continue to flash and the game
will continue. If the enemy is at this posi-
tion then there are two possible outcomes
of this engagement: either the player’s bat-
tleship or that of the enemy will be sunk,
and this is determined randomly!

If the enemy is sunk, the player wins the
game (indicated by the cursor ceasing to
flash) but if his own ship is sunk then a
new one will appear at the start position
with the enemy remaining at the position
where the ship was sunk.

If the enemy warship moves into a posi-
tion occupied by a merchant ship then that

ship will be sunk immediately (i.e. the
l.e.d. will go out) and the current position
of the raider will be revealed. Of course as
soon as the player attempts to move the
cursor to this new position, the enemy may
also move. If the merchant ship that is
sunk is the last one, the game is lost and
the cursor returns to its start position. To
re-start the game, the unit must be reset by
switching it off briefly.

�
	����
�����

��������
Although all the cards appear to be

stacked in favour of the PIC, the raider is
just as much in the dark about the position
of the merchant ships as the player is about
the position of the enemy. The PIC has no
strategy other than to randomly move
about the “sea” looking for ships, even to
the extent of crossing and re-crossing the
same squares.

If a ship is encountered then it will be
sunk but, as in war, that is a matter of luck.
Since the PIC has no memory of previous
games or indeed even of its last move,
there is no point in making the positions of
the merchant ships variable or changing

�����
���	

��		���
���

�������
���
�������	�������	��������
�	��
�������
�����������
����
�����
���

���	�	�����

754 Everyday Practical Electronics, October 2002

This 5 x 7 matrixed l.e.d. display
measures 39mm x 23mm.

Fig.1. How the ships are positioned. The enemy battleship at the centre of the
display is unseen. The circle represents your battleship and is a “moveable”
flashing l.e.d.

www.ep
em

ag
.co

m

their position between or during games.
These are therefore fixed by the program,
as is the raider’s initial position.

The “sea” is divided into “squares”,
each indicated by an l.e.d., with the
columns numbered 0 to 6 while the rows
are numbered as 0 to 4, as shown in Fig.1.

Each position is defined by one byte,
shown in Fig.2, where the most significant
nibble (highest four bits) defines the row
while the other nibble defines the column.
Thus the location at column 1, row 1, is
represented by the hexadecimal (hex)
number 00h. The raider’s initial position is
set at 23h as it will be in the third row
down in the fourth column, while the posi-
tions of the merchant ships are stored as
numbers 01h, 14h, 26h, 30h and 43h. The
cursor position is defined in the same way,
starting at 40h.

R18 and capacitor C1 set the PIC’s clock fre-
quency, at about 4MHz.

The l.e.d. display, X1, is multiplexed,
which means that only one row is switched
on at any one time. During this period, the
appropriate column drives are activated in
sequence. Only the l.e.d. at the junction of
the “active” column and row is turned on.

As each row is switched on, the column
drives are altered and because this is done
very fast, all the “merchant ship” l.e.d.s
appear to be on at once. The rows are dri-
ven via pnp driver transistors, TR1 to TR5,
from PIC pins RA0 to RA3 plus RB3,
buffered by resistors R13 to R17. To
switch on a particular row, the correspond-
ing output port goes low.

The column drives are output from the
remaining lines of Port B via current limiting
resistors R3 to R9. These lines also have to
go low to switch on the corresponding l.e.d.

The function (game-play) selection
switches S1 to S5 are also multiplexed to
the lines connecting to the l.e.d. columns.
They are additionally buffered by resistors
R1 and R2. The PIC scans the switches to
determine if a change in the cursor posi-
tion is required or the fire button has been
pressed. During scanning, RB7 is taken
low and the three lines RB0 to RB2 are
redefined as inputs and read in turn.

Everyday Practical Electronics, October 2002 755

At least five cursor moves are required
to reach the raider’s initial position, giving
the enemy ship a chance to get away at the
beginning of the game. The position of the
enemy ship is stored in a register called
ENMY and the cursor position in one
called AIM.

The status of the merchant ships (i.e.
sunk or afloat) is stored in register MRCH
as five bits. These are set (binary 00011111)
at the start of the game and individually
reset to zero as each ship is sunk. These bits
control the display so that a 0 in a particular
position in this register prevents the l.e.d.
for that ship from turning on, so that only
the positions of the remaining merchant
ships will be indicated.

When all five ships have been sunk, the
game is lost and from the relative position
of the cursor and the last ship sunk, the
player will know how close he came to
catching the enemy battleship.

�����������	��

The complete circuit for PIC-Pocket

Battleships is shown in Fig.3. It is based
around a PIC16C54 microcontroller (one of
the earlier PIC types having a UV erasable
structure and window), which is operated in
RC (resistor-capacitor) mode as precise tim-
ing of the software is not necessary. Resistor

Ω

Ω

Ω

Ω

Ω

Ω

Ω

Fig.3. Complete circuit diagram for the PIC-Pocket Battleships game.

Fig.2. Arrangement of the program
registers which hold the ship positions
and their status.

www.ep
em

ag
.co

m

Transistors TR1 to TR5 are turned off
during this process. This prevents switch
presses from shorting out column lines and
causing erroneous displays. (Pressing more
than one key at a time will still cause an
erroneous display, but the game is not
intended to be used in this way.) The soft-
ware has been written to eliminate switch-
bounce problems.

The circuit is designed to operate from a
3V d.c. supply and no voltage regulation is
required. It must not be run at a voltage
greater than 6V d.c..

The PIC consumes very little current
and since only one matrixed l.e.d. is on at
any one time the current consumption of
the whole unit is only about 10mA.
Consequently, the circuit can be powered
by two series-connected AA cells (1·5V
each). It can also be operated on a 2·5V
supply, so that rechargeable NiCad cells
with their lower terminal voltage (1·2V)
could also be used. (The PIC can be run
from a voltage as low as 2V, although the
l.e.d.s will be far less bright.)

����������	
The game requires that random numbers

are generated to determine the raider’s next
move. This is achieved by using a register
which counts continuously while the pro-
gram is running. The counter is read when-
ever one of the cursor positioning switches
is pressed. Since this will occur at various
time intervals, depending on the player and

the fact that the count rate is very fast, the
actual count reached will, to all intents, be
indeterminate.

There are five possible ways that the
enemy ship can move following a switch
being pressed: up, down, left, right or
remain in its current position. The counter
is therefore programmed to count to four
and when five is reached, it is reset to zero
thus giving five different states. When a
switch is pressed, the counter’s value is
read and the appropriate move is made. Bit
0 of this counter is also tested to determine
the result of an encounter between the two
opposing warships and thus provide an ele-
ment of chance in the result.

The chances of one of these options
occurring more often than the others can
be increased by readers who are familiar
with PIC programming. The software
could be written to have more states than
five and having a count of, say, one and
two corresponding to the “move up” com-
mand, while three, four and five corre-
spond to the “move left” command, for
example.

Alternatively, making provision for the
raider to move two squares on some of the
counts could make the game more difficult.
Adding or subtracting 02h instead of 01h
from the enemy position register to move it
horizontally, or 20h instead of 10h to move
it vertically would do this.

The first part of the position controlling
subroutine (EPOS) decodes the random

counter (RND) and the program then pro-
ceeds, as appropriate to the decoded value,
to move the enemy one square down, right,
left or up, or to exit the routine without
change. Adding or subtracting 10h or 01h
from the current contents of the ENMY
register does this and a software check is
also made to ensure that the ship does not
move out of the displayed area.

756 Everyday Practical Electronics, October 2002

Approx. Cost
Guidance Only ££1155

excluding battery

�������
�

Resistors
R1, R2 2k2 (2 off)
R3 to R9 47� (7 off)
R10 to R17 10k (8 off)
R18 4k7

All 0·25W 5% carbon film.

Capacitor
C1 22p ceramic disc

Semiconductors
TR1 to TR5 BC558 pnp transistor

(or similar)
IC1 PIC16C54

microcontroller,
preprogrammed
(see text)

X1 SE1110, 5 x 7 matrixed
l.e.d. display,
row-anode (see text)

Miscellaneous
S1 to S5 min. push-to-make

switch, p.c.b. or panel
mounting (see text)
(5 off)

S6 min. s.p.s.t. toggle switch

Stripboard, 24 holes x 24 strips; strip-
board, 17 holes x 15 strips (optional, see
text); plastic case to suit (see text);
battery holder/connector for 2 x AA bat-
teries; connecting wire; solder, etc.

See
SSHHOOPP
TTAALLKK
ppaaggee

Component layout
and stripboard
track view for
(Fig.4, left) the
main control
board, and (Fig.5,
above) the option-
al switch board
(see text).

www.ep
em

ag
.co

m

EPE Online
Note that you can purchase pre-programmed PIC microcontrollers for our PIC projects (see the “ShopTalk” page in the associated issue of the Magazine for more details). Alternatively, if you wish to program the PIC yourself, you can find the code files by bouncing over to the EPE Online Library (visit www.epemag.com, click in the “Library” link in the top navigation, then on the “Project Code Files” link).

Thus if the enemy is at position 16h and
01h (move right) is added, the result will be
position 17h which is off the screen. This is
detected and 01h is subtracted again, thus
leaving the enemy in position 16h. In this
program, the effect of a ship trying to move
out of the screen area will therefore result
in a “no move” instruction and this will
apply to both the enemy ship and the
cursor.

The program could easily be changed
so that if the above occurred, the enemy
position could become 10h simply by
loading ENMY with 10h when 17h is
detected instead of subtracting 01h from
this register. If this was made to apply
only to the ENMY register and not to the
AIM (cursor) register, the enemy ship
would become much harder to catch. This
could be done by setting or clearing a
spare bit in the FLAG register (bit 4, say)
and on this basis either subtracting 01h or
resetting the target register to 10h as
required.

Pressing the “move right” switch when
the cursor is at position 16h, however, will
still result in the enemy warship moving in
accordance with the contents of the RND
register at that instant, although the cursor
will not move.

������������
The PIC-Pocket Battleships’ control cir-

cuit is assembled on a piece of stripboard,
24 strips long by 24 holes wide. This
accommodates all of the components
except the switches and the battery, which
are connected to the board by flying leads.
The component layout and track-cut details
are shown in Fig.4.

First make the 24 required breaks in the
tracks, using a 2·5mm diameter drill bit, or
the special tool available for this purpose.
Next solder in all the link wires, noting that
some go under the l.e.d. matrix position.
Then insert and solder the components in
any preferred order. A socket must be used
for the PIC.

Although the transistors are specified as
BC558 types, virtually any small signal

pnp type will be suitable. Care should be
taken if other types are used however, as
their pinouts may vary.

The l.e.d. matrix type used in the proto-
type measures 39mm × 23mm, although
17mm and 50mm wide types could be
used, provided that they are specified as
“row-anode”.

In the prototype, the display was mount-
ed on the board by means of two 7-pin
sockets obtained by cutting a standard 14-
pin d.i.l. i.c. socket in half. It is positioned
with its identity writing side to the right as
viewed in Fig.4.

The prototype was not built into a box
and the switches were mounted on a sepa-
rate piece of stripboard whose assembly
details are shown in Fig.5. However, the
circuit could be fitted into a small handheld
case which also has a battery compartment.
Holes should be drilled for the switches.
They should be standard push-to-make

types and connected to the board by flying
leads.

When the circuit is complete, and fully
checked for errors and bad soldering, the
preprogrammed PIC can be fitted into its
socket. Ensure that this is fitted the correct
way around. See this month’s Shoptalk
page for details of obtaining the software
and preprogrammed PICs.

The circuit should work correctly when
power is switched on, provided it has been
wired correctly. There are no adjustments
to be made.

	��
���

���������
The use of a microcontroller enables

various features to be added to the game to
make it more interesting and these are lim-
ited only by the programmer’s imagina-
tion, especially as no extra components are
required.

Some of these possibilities have
already been mentioned. One promising
additional idea is to limit the quantity of
ammunition carried by your own warship
to, say, ten firings before the ship has to
return to port (position 40h) to replenish
its supply. A new register defined to count
the number of times the fire button is
pressed could be used to control this and
the register could be reset to ten (or some
other value) each time the cursor went to
position 40h.

A similar idea would be to limit the
range of your warship to say 20 moves.
When this total expired, the ship could
automatically “return” to port by loading
40h into the AIM register, or perhaps need
to make its way back before its “fuel” ran
out. A ship that could not return to port
would be lost and a new one could appear
at the home port. In this case, the number
of warships could be limited to say three,
so that if these were lost, the enemy would
win the game.

This game could also be modified so
that each time the enemy ship entered the
port (i.e. location 40h) one of the ships
there would be sunk. In this way, some of
the player’s ships could be sunk before
they even left port. In this version, the
port l.e.d. could remain illuminated to
inform the player that new ships were
still available.

�����������	���
The idea of a home port could also be

easily extended to a base for the enemy
(location 06h for example). Here, if the
enemy returned to port, the player
would loose the game so that as well as
trying to protect his ships, the player
would be forced to patrol near the
enemy base to prevent the raider from
returning home.

This option could appear only after all of
the merchant ships had been sunk and here
the movement options of the raider could
be limited to move up, move right or stay
still so that it would naturally tend to head
for its base at the top right hand corner of
the display when no more merchant ships
remain afloat.

Modifications to the software to develop
other scenarios to make the game harder
would form an excellent basis for a science
project to give budding programmers an
opportunity to exercise their programming
skills! �

Everyday Practical Electronics, October 2002 757

www.ep
em

ag
.co

m

